You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
791 lines
28 KiB
791 lines
28 KiB
/**
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2017, 2022 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef TSL_ROBIN_MAP_H
|
|
#define TSL_ROBIN_MAP_H
|
|
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <initializer_list>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "robin_hash.h"
|
|
|
|
namespace tsl {
|
|
|
|
/**
|
|
* Implementation of a hash map using open-addressing and the robin hood hashing
|
|
* algorithm with backward shift deletion.
|
|
*
|
|
* For operations modifying the hash map (insert, erase, rehash, ...), the
|
|
* strong exception guarantee is only guaranteed when the expression
|
|
* `std::is_nothrow_swappable<std::pair<Key, T>>\:\:value &&
|
|
* std::is_nothrow_move_constructible<std::pair<Key, T>>\:\:value` is true,
|
|
* otherwise if an exception is thrown during the swap or the move, the hash map
|
|
* may end up in a undefined state. Per the standard a `Key` or `T` with a
|
|
* noexcept copy constructor and no move constructor also satisfies the
|
|
* `std::is_nothrow_move_constructible<std::pair<Key, T>>\:\:value` criterion (and
|
|
* will thus guarantee the strong exception for the map).
|
|
*
|
|
* When `StoreHash` is true, 32 bits of the hash are stored alongside the
|
|
* values. It can improve the performance during lookups if the `KeyEqual`
|
|
* function takes time (if it engenders a cache-miss for example) as we then
|
|
* compare the stored hashes before comparing the keys. When
|
|
* `tsl::rh::power_of_two_growth_policy` is used as `GrowthPolicy`, it may also
|
|
* speed-up the rehash process as we can avoid to recalculate the hash. When it
|
|
* is detected that storing the hash will not incur any memory penalty due to
|
|
* alignment (i.e. `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType,
|
|
* true>) == sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`)
|
|
* and `tsl::rh::power_of_two_growth_policy` is used, the hash will be stored
|
|
* even if `StoreHash` is false so that we can speed-up the rehash (but it will
|
|
* not be used on lookups unless `StoreHash` is true).
|
|
*
|
|
* `GrowthPolicy` defines how the map grows and consequently how a hash value is
|
|
* mapped to a bucket. By default the map uses
|
|
* `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of
|
|
* buckets to a power of two and uses a mask to map the hash to a bucket instead
|
|
* of the slow modulo. Other growth policies are available and you may define
|
|
* your own growth policy, check `tsl::rh::power_of_two_growth_policy` for the
|
|
* interface.
|
|
*
|
|
* `std::pair<Key, T>` must be swappable.
|
|
*
|
|
* `Key` and `T` must be copy and/or move constructible.
|
|
*
|
|
* If the destructor of `Key` or `T` throws an exception, the behaviour of the
|
|
* class is undefined.
|
|
*
|
|
* Iterators invalidation:
|
|
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
|
* - insert, emplace, emplace_hint, operator[]: if there is an effective
|
|
* insert, invalidate the iterators.
|
|
* - erase: always invalidate the iterators.
|
|
*/
|
|
template <class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
|
class Allocator = std::allocator<std::pair<Key, T>>, bool StoreHash = false,
|
|
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
|
|
class robin_map
|
|
{
|
|
private:
|
|
template <typename U> using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
|
|
|
|
class KeySelect
|
|
{
|
|
public:
|
|
using key_type = Key;
|
|
|
|
const key_type &operator()(const std::pair<Key, T> &key_value) const noexcept
|
|
{
|
|
return key_value.first;
|
|
}
|
|
|
|
key_type &operator()(std::pair<Key, T> &key_value) noexcept { return key_value.first; }
|
|
};
|
|
|
|
class ValueSelect
|
|
{
|
|
public:
|
|
using value_type = T;
|
|
|
|
const value_type &operator()(const std::pair<Key, T> &key_value) const noexcept
|
|
{
|
|
return key_value.second;
|
|
}
|
|
|
|
value_type &operator()(std::pair<Key, T> &key_value) noexcept { return key_value.second; }
|
|
};
|
|
|
|
using ht = detail_robin_hash::robin_hash<std::pair<Key, T>, KeySelect, ValueSelect, Hash,
|
|
KeyEqual, Allocator, StoreHash, GrowthPolicy>;
|
|
|
|
public:
|
|
using key_type = typename ht::key_type;
|
|
using mapped_type = T;
|
|
using value_type = typename ht::value_type;
|
|
using size_type = typename ht::size_type;
|
|
using difference_type = typename ht::difference_type;
|
|
using hasher = typename ht::hasher;
|
|
using key_equal = typename ht::key_equal;
|
|
using allocator_type = typename ht::allocator_type;
|
|
using reference = typename ht::reference;
|
|
using const_reference = typename ht::const_reference;
|
|
using pointer = typename ht::pointer;
|
|
using const_pointer = typename ht::const_pointer;
|
|
using iterator = typename ht::iterator;
|
|
using const_iterator = typename ht::const_iterator;
|
|
|
|
public:
|
|
/*
|
|
* Constructors
|
|
*/
|
|
robin_map() : robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {}
|
|
|
|
explicit robin_map(size_type bucket_count, const Hash &hash = Hash(),
|
|
const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator())
|
|
: m_ht(bucket_count, hash, equal, alloc)
|
|
{
|
|
}
|
|
|
|
robin_map(size_type bucket_count, const Allocator &alloc)
|
|
: robin_map(bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
robin_map(size_type bucket_count, const Hash &hash, const Allocator &alloc)
|
|
: robin_map(bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
explicit robin_map(const Allocator &alloc) : robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {}
|
|
|
|
template <class InputIt>
|
|
robin_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
|
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
|
|
const Allocator &alloc = Allocator())
|
|
: robin_map(bucket_count, hash, equal, alloc)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template <class InputIt>
|
|
robin_map(InputIt first, InputIt last, size_type bucket_count, const Allocator &alloc)
|
|
: robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
template <class InputIt>
|
|
robin_map(InputIt first, InputIt last, size_type bucket_count, const Hash &hash,
|
|
const Allocator &alloc)
|
|
: robin_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
robin_map(std::initializer_list<value_type> init,
|
|
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(),
|
|
const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator())
|
|
: robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
|
{
|
|
}
|
|
|
|
robin_map(std::initializer_list<value_type> init, size_type bucket_count,
|
|
const Allocator &alloc)
|
|
: robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
robin_map(std::initializer_list<value_type> init, size_type bucket_count, const Hash &hash,
|
|
const Allocator &alloc)
|
|
: robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
robin_map &operator=(std::initializer_list<value_type> ilist)
|
|
{
|
|
m_ht.clear();
|
|
|
|
m_ht.reserve(ilist.size());
|
|
m_ht.insert(ilist.begin(), ilist.end());
|
|
|
|
return *this;
|
|
}
|
|
|
|
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
|
|
|
/*
|
|
* Iterators
|
|
*/
|
|
iterator begin() noexcept { return m_ht.begin(); }
|
|
const_iterator begin() const noexcept { return m_ht.begin(); }
|
|
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
|
|
|
iterator end() noexcept { return m_ht.end(); }
|
|
const_iterator end() const noexcept { return m_ht.end(); }
|
|
const_iterator cend() const noexcept { return m_ht.cend(); }
|
|
|
|
/*
|
|
* Capacity
|
|
*/
|
|
bool empty() const noexcept { return m_ht.empty(); }
|
|
size_type size() const noexcept { return m_ht.size(); }
|
|
size_type max_size() const noexcept { return m_ht.max_size(); }
|
|
|
|
/*
|
|
* Modifiers
|
|
*/
|
|
void clear() noexcept { m_ht.clear(); }
|
|
|
|
std::pair<iterator, bool> insert(const value_type &value) { return m_ht.insert(value); }
|
|
|
|
template <class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type
|
|
* = nullptr>
|
|
std::pair<iterator, bool> insert(P &&value)
|
|
{
|
|
return m_ht.emplace(std::forward<P>(value));
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(value_type &&value) { return m_ht.insert(std::move(value)); }
|
|
|
|
iterator insert(const_iterator hint, const value_type &value)
|
|
{
|
|
return m_ht.insert_hint(hint, value);
|
|
}
|
|
|
|
template <class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type
|
|
* = nullptr>
|
|
iterator insert(const_iterator hint, P &&value)
|
|
{
|
|
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
|
}
|
|
|
|
iterator insert(const_iterator hint, value_type &&value)
|
|
{
|
|
return m_ht.insert_hint(hint, std::move(value));
|
|
}
|
|
|
|
template <class InputIt> void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
|
|
|
|
void insert(std::initializer_list<value_type> ilist)
|
|
{
|
|
m_ht.insert(ilist.begin(), ilist.end());
|
|
}
|
|
|
|
template <class M> std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj)
|
|
{
|
|
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
|
}
|
|
|
|
template <class M> std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj)
|
|
{
|
|
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
|
}
|
|
|
|
template <class M> iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj)
|
|
{
|
|
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
|
}
|
|
|
|
template <class M> iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj)
|
|
{
|
|
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
|
}
|
|
|
|
/**
|
|
* Due to the way elements are stored, emplace will need to move or copy the
|
|
* key-value once. The method is equivalent to
|
|
* insert(value_type(std::forward<Args>(args)...));
|
|
*
|
|
* Mainly here for compatibility with the std::unordered_map interface.
|
|
*/
|
|
template <class... Args> std::pair<iterator, bool> emplace(Args &&...args)
|
|
{
|
|
return m_ht.emplace(std::forward<Args>(args)...);
|
|
}
|
|
|
|
/**
|
|
* Due to the way elements are stored, emplace_hint will need to move or copy
|
|
* the key-value once. The method is equivalent to insert(hint,
|
|
* value_type(std::forward<Args>(args)...));
|
|
*
|
|
* Mainly here for compatibility with the std::unordered_map interface.
|
|
*/
|
|
template <class... Args> iterator emplace_hint(const_iterator hint, Args &&...args)
|
|
{
|
|
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class... Args>
|
|
std::pair<iterator, bool> try_emplace(const key_type &k, Args &&...args)
|
|
{
|
|
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class... Args> std::pair<iterator, bool> try_emplace(key_type &&k, Args &&...args)
|
|
{
|
|
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class... Args>
|
|
iterator try_emplace(const_iterator hint, const key_type &k, Args &&...args)
|
|
{
|
|
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class... Args> iterator try_emplace(const_iterator hint, key_type &&k, Args &&...args)
|
|
{
|
|
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
|
|
}
|
|
|
|
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
|
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
|
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
|
size_type erase(const key_type &key) { return m_ht.erase(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup to the value if you already have the hash.
|
|
*/
|
|
size_type erase(const key_type &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.erase(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
size_type erase(const K &key)
|
|
{
|
|
return m_ht.erase(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup to the value if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
size_type erase(const K &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.erase(key, precalculated_hash);
|
|
}
|
|
|
|
void swap(robin_map &other) { other.m_ht.swap(m_ht); }
|
|
|
|
/*
|
|
* Lookup
|
|
*/
|
|
T &at(const Key &key) { return m_ht.at(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
T &at(const Key &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.at(key, precalculated_hash);
|
|
}
|
|
|
|
const T &at(const Key &key) const { return m_ht.at(key); }
|
|
|
|
/**
|
|
*/
|
|
const T &at(const Key &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.at(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
T &at(const K &key)
|
|
{
|
|
return m_ht.at(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
T &at(const K &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.at(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
const T &at(const K &key) const
|
|
{
|
|
return m_ht.at(key);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
const T &at(const K &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.at(key, precalculated_hash);
|
|
}
|
|
|
|
T &operator[](const Key &key) { return m_ht[key]; }
|
|
T &operator[](Key &&key) { return m_ht[std::move(key)]; }
|
|
|
|
size_type count(const Key &key) const { return m_ht.count(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
size_type count(const Key &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.count(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
size_type count(const K &key) const
|
|
{
|
|
return m_ht.count(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
size_type count(const K &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.count(key, precalculated_hash);
|
|
}
|
|
|
|
iterator find(const Key &key) { return m_ht.find(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
iterator find(const Key &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
const_iterator find(const Key &key) const { return m_ht.find(key); }
|
|
|
|
/**
|
|
*/
|
|
const_iterator find(const Key &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
iterator find(const K &key)
|
|
{
|
|
return m_ht.find(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
iterator find(const K &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
const_iterator find(const K &key) const
|
|
{
|
|
return m_ht.find(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
const_iterator find(const K &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
bool contains(const Key &key) const { return m_ht.contains(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
bool contains(const Key &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.contains(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
bool contains(const K &key) const
|
|
{
|
|
return m_ht.contains(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
bool contains(const K &key, std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.contains(key, precalculated_hash);
|
|
}
|
|
|
|
std::pair<iterator, iterator> equal_range(const Key &key) { return m_ht.equal_range(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
std::pair<iterator, iterator> equal_range(const Key &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
std::pair<const_iterator, const_iterator> equal_range(const Key &key) const
|
|
{
|
|
return m_ht.equal_range(key);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
std::pair<const_iterator, const_iterator> equal_range(const Key &key,
|
|
std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef
|
|
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
|
|
* to Key.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
std::pair<iterator, iterator> equal_range(const K &key)
|
|
{
|
|
return m_ht.equal_range(key);
|
|
}
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The
|
|
* hash value should be the same as hash_function()(key). Useful to speed-up
|
|
* the lookup if you already have the hash.
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
std::pair<iterator, iterator> equal_range(const K &key, std::size_t precalculated_hash)
|
|
{
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
std::pair<const_iterator, const_iterator> equal_range(const K &key) const
|
|
{
|
|
return m_ht.equal_range(key);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
template <class K, class KE = KeyEqual,
|
|
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
|
|
std::pair<const_iterator, const_iterator> equal_range(const K &key,
|
|
std::size_t precalculated_hash) const
|
|
{
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
/*
|
|
* Bucket interface
|
|
*/
|
|
size_type bucket_count() const { return m_ht.bucket_count(); }
|
|
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
|
|
|
/*
|
|
* Hash policy
|
|
*/
|
|
float load_factor() const { return m_ht.load_factor(); }
|
|
|
|
float min_load_factor() const { return m_ht.min_load_factor(); }
|
|
float max_load_factor() const { return m_ht.max_load_factor(); }
|
|
|
|
/**
|
|
* Set the `min_load_factor` to `ml`. When the `load_factor` of the map goes
|
|
* below `min_load_factor` after some erase operations, the map will be
|
|
* shrunk when an insertion occurs. The erase method itself never shrinks
|
|
* the map.
|
|
*
|
|
* The default value of `min_load_factor` is 0.0f, the map never shrinks by
|
|
* default.
|
|
*/
|
|
void min_load_factor(float ml) { m_ht.min_load_factor(ml); }
|
|
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
|
|
|
void rehash(size_type my_count) { m_ht.rehash(my_count); }
|
|
void reserve(size_type my_count) { m_ht.reserve(my_count); }
|
|
|
|
/*
|
|
* Observers
|
|
*/
|
|
hasher hash_function() const { return m_ht.hash_function(); }
|
|
key_equal key_eq() const { return m_ht.key_eq(); }
|
|
|
|
/*
|
|
* Other
|
|
*/
|
|
|
|
/**
|
|
* Convert a const_iterator to an iterator.
|
|
*/
|
|
iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); }
|
|
|
|
/**
|
|
* Serialize the map through the `serializer` parameter.
|
|
*
|
|
* The `serializer` parameter must be a function object that supports the
|
|
* following call:
|
|
* - `template<typename U> void operator()(const U& value);` where the types
|
|
* `std::int16_t`, `std::uint32_t`, `std::uint64_t`, `float` and
|
|
* `std::pair<Key, T>` must be supported for U.
|
|
*
|
|
* The implementation leaves binary compatibility (endianness, IEEE 754 for
|
|
* floats, ...) of the types it serializes in the hands of the `Serializer`
|
|
* function object if compatibility is required.
|
|
*/
|
|
template <class Serializer> void serialize(Serializer &serializer) const
|
|
{
|
|
m_ht.serialize(serializer);
|
|
}
|
|
|
|
/**
|
|
* Deserialize a previously serialized map through the `deserializer`
|
|
* parameter.
|
|
*
|
|
* The `deserializer` parameter must be a function object that supports the
|
|
* following call:
|
|
* - `template<typename U> U operator()();` where the types `std::int16_t`,
|
|
* `std::uint32_t`, `std::uint64_t`, `float` and `std::pair<Key, T>` must be
|
|
* supported for U.
|
|
*
|
|
* If the deserialized hash map type is hash compatible with the serialized
|
|
* map, the deserialization process can be sped up by setting
|
|
* `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and
|
|
* GrowthPolicy must behave the same way than the ones used on the serialized
|
|
* map and the StoreHash must have the same value. The `std::size_t` must also
|
|
* be of the same size as the one on the platform used to serialize the map.
|
|
* If these criteria are not met, the behaviour is undefined with
|
|
* `hash_compatible` sets to true.
|
|
*
|
|
* The behaviour is undefined if the type `Key` and `T` of the `robin_map` are
|
|
* not the same as the types used during serialization.
|
|
*
|
|
* The implementation leaves binary compatibility (endianness, IEEE 754 for
|
|
* floats, size of int, ...) of the types it deserializes in the hands of the
|
|
* `Deserializer` function object if compatibility is required.
|
|
*/
|
|
template <class Deserializer>
|
|
static robin_map deserialize(Deserializer &deserializer, bool hash_compatible = false)
|
|
{
|
|
robin_map map(0);
|
|
map.m_ht.deserialize(deserializer, hash_compatible);
|
|
|
|
return map;
|
|
}
|
|
|
|
friend bool operator==(const robin_map &lhs, const robin_map &rhs)
|
|
{
|
|
if (lhs.size() != rhs.size()) {
|
|
return false;
|
|
}
|
|
|
|
for (const auto &element_lhs : lhs) {
|
|
const auto it_element_rhs = rhs.find(element_lhs.first);
|
|
if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
friend bool operator!=(const robin_map &lhs, const robin_map &rhs)
|
|
{
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
friend void swap(robin_map &lhs, robin_map &rhs) { lhs.swap(rhs); }
|
|
|
|
private:
|
|
ht m_ht;
|
|
};
|
|
|
|
/**
|
|
* Same as `tsl::robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash,
|
|
* tsl::rh::prime_growth_policy>`.
|
|
*/
|
|
template <class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
|
class Allocator = std::allocator<std::pair<Key, T>>, bool StoreHash = false>
|
|
using robin_pg_map =
|
|
robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
|
|
|
|
} // end namespace tsl
|
|
|
|
#endif
|
|
|