Cloned library HDF5-1.14.1 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5238 lines
220 KiB

2 years ago
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Purpose: Tests the data type interface (H5T)
*/
#include "h5test.h"
/* Number of elements in each random test */
#define NTESTELEM 10000
/* Epsilon for floating-point comparisons */
#define FP_EPSILON 0.000001F
/*
* Offset from aligned memory returned by malloc(). This can be used to test
* that type conversions handle non-aligned buffers correctly.
*/
#define ALIGNMENT 1
/*
* Define if you want to test alignment code on a machine that doesn't
* normally require alignment. When set, all native data types must be aligned
* on a byte boundary equal to the data size.
*/
#define TEST_ALIGNMENT
/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_FRIEND /*suppress error about including H5Tpkg */
#include "H5Tpkg.h"
#endif
#define SET_ALIGNMENT(TYPE, VAL) H5T_NATIVE_##TYPE##_ALIGN_g = MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)
const char *FILENAME[] = {"dt_arith1", "dt_arith2", NULL};
/*
* Count up or down depending on whether the machine is big endian or little
* endian. If local variable `endian' is H5T_ORDER_BE then the result will
* be I, otherwise the result will be Z-(I+1).
*/
#define ENDIAN(Z, I, E) (H5T_ORDER_BE == (E) ? (I) : (Z) - ((I) + 1))
typedef enum dtype_t {
INT_SCHAR,
INT_UCHAR,
INT_SHORT,
INT_USHORT,
INT_INT,
INT_UINT,
INT_LONG,
INT_ULONG,
INT_LLONG,
INT_ULLONG,
FLT_FLOAT,
FLT_DOUBLE,
FLT_LDOUBLE,
OTHER
} dtype_t;
/*
* Although we check whether a floating point overflow generates a SIGFPE and
* turn off overflow tests in that case, it might still be possible for an
* overflow condition to occur. Once a SIGFPE is raised the program cannot
* be allowed to continue (cf. Posix signals) so in order to recover from a
* SIGFPE we run tests that might generate one in a child process.
*/
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
#define HANDLE_SIGFPE
#endif
/*
* Decide what values of floating-point number we want to test. They are
* 1 - normalized; 2 - denormalized; 3 - special.
*/
#define TEST_NOOP 0
#define TEST_NORMAL 1
#define TEST_DENORM 2
#define TEST_SPECIAL 3
/* Temporary buffer sizes */
#define TMP_BUF_DIM1 32
#define TMP_BUF_DIM2 100
/* Don't use hardware conversions if set */
static int without_hardware_g = 0;
/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z) ((void *)((char *)HDmalloc(ALIGNMENT + Z) + ALIGNMENT))
#define aligned_free(M) HDfree((char *)(M)-ALIGNMENT)
/* Initialize source buffer of integer for integer->integer and integer->floating-point conversion test.
* This algorithm is mainly to avoid any casting and comparison between source and destination types
* for compiler, because we're testing conversions. */
#define INIT_INTEGER(TYPE, SRC_MAX, SRC_MIN, SRC_SIZE, DST_SIZE, SRC_PREC, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
unsigned int n; \
TYPE value1 = 1; \
TYPE value2 = 0; \
\
/* Allocate buffers */ \
NELMTS = SRC_PREC * 3; \
BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*positive values, ascending order. VALUE1 starts from 00000001, to 00000010, until 10000000*/ \
/*VALUE2 ascends from 00000000, to 00000011, 00000111,..., until 11111111.*/ \
for (n = 0; n < SRC_PREC; n++) { \
{ \
HDmemcpy(buf_p, &value1, SRC_SIZE); \
HDmemcpy(saved_p, &value1, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
{ \
HDmemcpy(buf_p, &value2, SRC_SIZE); \
HDmemcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
\
if (n < SRC_PREC - 2) { \
value1 = (TYPE)(value1 << 1); \
value2 = (TYPE)((value1 - 1) | value1); \
} \
else if (n == SRC_PREC - 2) { /*to avoid overflow of negative values for signed integer*/ \
value1 = (TYPE)(value1 << 1); \
value2 = (TYPE)((~value1) | value1); \
} \
} \
\
/* negative values for signed; descending positive values for unsigned */ \
/* VALUE2 descends from 11111111 to 11111110, 11111100, ..., until 10000000. */ \
for (n = 0; n < SRC_PREC - 1; n++) { \
{ \
HDmemcpy(buf_p, &value2, SRC_SIZE); \
HDmemcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
if (n < SRC_PREC - 1) \
value2 = (TYPE)(value2 << 1); \
} \
}
/* Change a buffer's byte order from big endian to little endian. It's mainly for library's
* bit operations which handle only little endian order.
*/
#define CHANGE_ORDER(EBUF, EORDER, ESIZE) \
{ \
unsigned int m; \
if (H5T_ORDER_BE == EORDER) { \
unsigned char mediator; \
size_t half_size = ESIZE / 2; \
for (m = 0; m < half_size; m++) { \
mediator = EBUF[ESIZE - (m + 1)]; \
EBUF[ESIZE - (m + 1)] = EBUF[m]; \
EBUF[m] = mediator; \
} \
} \
else if (H5T_ORDER_VAX == EORDER) { \
unsigned char mediator1, mediator2; \
for (m = 0; m < ESIZE; m += 4) { \
mediator1 = EBUF[m]; \
mediator2 = EBUF[m + 1]; \
\
EBUF[m] = EBUF[(ESIZE - 2) - m]; \
EBUF[m + 1] = EBUF[(ESIZE - 1) - m]; \
\
EBUF[(ESIZE - 2) - m] = mediator1; \
EBUF[(ESIZE - 1) - m] = mediator2; \
} \
} \
}
/* Allocate buffer and initialize it with floating-point normalized values.
* It's for conversion test of floating-point as the source.
*/
#define INIT_FP_NORM(TYPE, SRC_MAX, SRC_MIN, SRC_MAX_10_EXP, SRC_MIN_10_EXP, SRC_SIZE, DST_SIZE, BUF, SAVED, \
NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
size_t num_norm, factor, n; \
TYPE value1, value2; \
TYPE multiply; \
\
/*Determine the number of normalized values and increment pace. The values start from \
*minimal normalized value and are multiplied by MULTIPLY each step until reach to maximal \
*normalized value.*/ \
if (SRC_MAX_10_EXP < 100) { /*for float*/ \
factor = 0; \
multiply = 10; \
} \
else if (SRC_MAX_10_EXP >= 100 && SRC_MAX_10_EXP < 400) { /*for double*/ \
factor = 2; \
multiply = 10000; \
} \
else { /*for long double*/ \
factor = 3; \
multiply = 100000000; \
} \
\
/*The number of values if multiplied by 10 for each step.*/ \
num_norm = (SRC_MAX_10_EXP - SRC_MIN_10_EXP); \
/*Reduce the number of values by 2^factor. MULTIPLY=10^(2^factor). Using this algorithm \
*instead of arithmetic operation to avoid any conversion*/ \
num_norm >>= factor; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
(num_norm + /*number of normalized values*/ \
1); /*maximal normalized value*/ \
\
/* Allocate buffers */ \
BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*Normalized values*/ \
value1 = SRC_MIN; \
value2 = -SRC_MIN; \
for (n = 0; n < num_norm; n++) { \
if (value1 < SRC_MAX) { /*positive*/ \
HDmemcpy(buf_p, &value1, SRC_SIZE); \
HDmemcpy(saved_p, &value1, SRC_SIZE); \
value1 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
if (value2 > -SRC_MAX) { /*negative*/ \
HDmemcpy(buf_p, &value2, SRC_SIZE); \
HDmemcpy(saved_p, &value2, SRC_SIZE); \
value2 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
} \
\
value1 = SRC_MAX; /*maximal value*/ \
HDmemcpy(buf_p, &value1, SRC_SIZE); \
HDmemcpy(saved_p, &value1, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
value2 = -SRC_MAX; /*negative value*/ \
HDmemcpy(buf_p, &value2, SRC_SIZE); \
HDmemcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
}
/* Allocate buffer and initialize it with floating-point denormalized values.
* It's for conversion test of floating-point as the source.
*/
#define INIT_FP_DENORM(TYPE, SRC_MANT_DIG, SRC_SIZE, SRC_PREC, SRC_ORDR, DST_SIZE, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
unsigned char *tmp1, *tmp2; \
size_t n; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
(SRC_MANT_DIG - 1); /*number of denormalized values*/ \
\
/* Allocate buffers */ \
BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
\
tmp1 = (unsigned char *)HDcalloc((size_t)1, (size_t)SRC_SIZE); \
tmp2 = (unsigned char *)HDcalloc((size_t)1, (size_t)SRC_SIZE); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*Denormalized values. Exponent is 0. Let mantissa starts from 00000001, 00000011, \
*00000111,..., until 11111111.*/ \
HDmemset(tmp1, 0, SRC_SIZE); \
HDmemset(tmp2, 0, SRC_SIZE); \
H5T__bit_set(tmp2, SRC_PREC - 1, (size_t)1, TRUE); /*the negative value*/ \
for (n = 0; n < SRC_MANT_DIG - 1; n++) { \
H5T__bit_set(tmp1, n, (size_t)1, TRUE); /*turn on 1 bit each time*/ \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
HDmemcpy(buf_p, tmp1, SRC_SIZE); \
HDmemcpy(saved_p, tmp1, SRC_SIZE); \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
/*negative values*/ \
H5T__bit_set(tmp2, n, (size_t)1, TRUE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
HDmemcpy(buf_p, tmp2, SRC_SIZE); \
HDmemcpy(saved_p, tmp2, SRC_SIZE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
HDfree(tmp1); \
HDfree(tmp2); \
}
/* Allocate buffer and initialize it with floating-point special values, +/-0, +/-infinity,
* +/-QNaN, +/-SNaN. It's for conversion test of floating-point as the source.
*/
#define INIT_FP_SPECIAL(SRC_SIZE, SRC_PREC, SRC_ORDR, SRC_MANT_DIG, DST_SIZE, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p; \
unsigned char *value; \
int n; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
4; /*infinity, SNaN, QNaN */ \
\
/* Allocate buffers */ \
BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
value = (unsigned char *)HDcalloc(SRC_SIZE, sizeof(unsigned char)); \
\
buf_p = BUF; \
\
/* +0 */ \
H5T__bit_set(value, (size_t)0, SRC_PREC, FALSE); \
HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \
buf_p += SRC_SIZE; \
\
for (n = 0; n < 2; n++) { \
if (n == 1) { \
HDmemset(value, 0, SRC_SIZE * sizeof(unsigned char)); \
/* -0 */ \
H5T__bit_set(value, (size_t)(SRC_PREC - 1), (size_t)1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
} \
\
/* +/-infinity */ \
H5T__bit_set(value, (size_t)(SRC_MANT_DIG - 1), SRC_PREC - SRC_MANT_DIG, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
\
/* +/-SNaN */ \
H5T__bit_set(value, (size_t)0, (size_t)1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
\
/* +/-QNaN */ \
H5T__bit_set(value, (size_t)(SRC_MANT_DIG - 2), (size_t)1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
} \
\
HDmemcpy(SAVED, BUF, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \
HDfree(value); \
}
static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits);
static int my_isnan(dtype_t type, void *val);
static int my_isinf(int endian, const unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos,
size_t esize);
/*-------------------------------------------------------------------------
* Function: fpe_handler
*
* Purpose: Exit with 255
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
*-------------------------------------------------------------------------
*/
static void
fpe_handler(int H5_ATTR_UNUSED signo)
{
SKIPPED();
HDputs(" Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
HDputs(" Remaining tests could not be run.");
HDputs(" Please turn off SIGFPE on overflows and try again.");
#endif
HDexit(255);
}
/*-------------------------------------------------------------------------
* Function: reset_hdf5
*
* Purpose: Reset the hdf5 library. This causes statistics to be printed
* and counters to be reset.
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
*-------------------------------------------------------------------------
*/
static void
reset_hdf5(void)
{
h5_reset();
if (without_hardware_g)
h5_no_hwconv();
#ifdef TEST_ALIGNMENT
SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(INT, H5_SIZEOF_INT);
SET_ALIGNMENT(UINT, H5_SIZEOF_INT);
SET_ALIGNMENT(LONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT);
SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE);
SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE);
#endif
}
/*-------------------------------------------------------------------------
* Function: except_func
*
* Purpose: Gets called for all data type conversion exceptions.
*
* Return: H5T_CONV_ABORT: -1
*
* H5T_CONV_UNHANDLED 0
*
* H5T_CONV_HANDLED 1
*
* Programmer: Raymond Lu
* April 19, 2004
*
*-------------------------------------------------------------------------
*/
static H5T_conv_ret_t
except_func(H5T_conv_except_t except_type, hid_t H5_ATTR_UNUSED src_id, hid_t H5_ATTR_UNUSED dst_id,
void H5_ATTR_UNUSED *src_buf, void *dst_buf, void *user_data)
{
H5T_conv_ret_t ret = H5T_CONV_HANDLED;
if (except_type == H5T_CONV_EXCEPT_RANGE_HI)
/*only test integer case*/
*(int *)dst_buf = *(int *)user_data;
else if (except_type == H5T_CONV_EXCEPT_RANGE_LOW)
/*only test integer case*/
*(int *)dst_buf = *(int *)user_data;
else if (except_type == H5T_CONV_EXCEPT_TRUNCATE)
ret = H5T_CONV_UNHANDLED;
else if (except_type == H5T_CONV_EXCEPT_PRECISION)
ret = H5T_CONV_UNHANDLED;
else if (except_type == H5T_CONV_EXCEPT_PINF)
/*only test integer case*/
*(int *)dst_buf = *(int *)user_data;
else if (except_type == H5T_CONV_EXCEPT_NINF)
/*only test integer case*/
*(int *)dst_buf = *(int *)user_data;
else if (except_type == H5T_CONV_EXCEPT_NAN)
/*only test integer case*/
*(int *)dst_buf = *(int *)user_data;
return ret;
}
/*-------------------------------------------------------------------------
* Function: test_hard_query
*
* Purpose: Tests H5Tcompiler_conv() for querying whether a conversion is
* a hard one.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Friday, Sept 2, 2005
*
*-------------------------------------------------------------------------
*/
static int
test_hard_query(void)
{
TESTING("query functions of compiler conversion");
/* Verify the conversion from int to float is a hard conversion. */
if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != TRUE) {
H5_FAILED();
HDprintf("Can't query conversion function\n");
goto error;
}
/* Unregister the hard conversion from int to float. Verify the conversion
* is a soft conversion. */
H5Tunregister(H5T_PERS_HARD, NULL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT,
(H5T_conv_t)((void (*)(void))H5T__conv_int_float));
if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != FALSE) {
H5_FAILED();
HDprintf("Can't query conversion function\n");
goto error;
}
/* Register the hard conversion from int to float. Verify the conversion
* is a hard conversion. */
H5Tregister(H5T_PERS_HARD, "int_flt", H5T_NATIVE_INT, H5T_NATIVE_FLOAT,
(H5T_conv_t)((void (*)(void))H5T__conv_int_float));
if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != TRUE) {
H5_FAILED();
HDprintf("Can't query conversion function\n");
goto error;
}
PASSED();
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
return 0;
error:
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: expt_handle
*
* Purpose: Gets called from test_particular_fp_integer() for data type
* conversion exceptions.
*
* Return: H5T_CONV_HANDLED 1
*
* Programmer: Raymond Lu
* Sept 7, 2005
*
*-------------------------------------------------------------------------
*/
static H5T_conv_ret_t
expt_handle(H5T_conv_except_t except_type, hid_t H5_ATTR_UNUSED src_id, hid_t H5_ATTR_UNUSED dst_id,
void H5_ATTR_UNUSED *src_buf, void *dst_buf, void *user_data)
{
signed char fill_value1 = 7;
int fill_value2 = 13;
if (except_type == H5T_CONV_EXCEPT_RANGE_HI || except_type == H5T_CONV_EXCEPT_RANGE_LOW ||
except_type == H5T_CONV_EXCEPT_TRUNCATE) {
if (*(hbool_t *)user_data)
*(signed char *)dst_buf = fill_value1;
else
*(int *)dst_buf = fill_value2;
} /* end if */
return H5T_CONV_HANDLED;
}
/*-------------------------------------------------------------------------
* Function: test_particular_fp_integer
*
* Purpose: Tests hard conversions from floating numbers to integers in
* a special situation when the source is "float" and assigned
* the value of "INT_MAX". A compiler may do roundup making
* this value "INT_MAX+1". When this float value is casted to
* int, overflow happens. This test makes sure the library
* returns exception in this situation.
*
* Also verifies the library handles conversion from double to
* signed char correctly when the value of double is SCHAR_MAX.
* The test makes sure the signed char doesn't overflow.
*
* This test is mainly for netCDF's request.
*
* Return: Success: 0
*
* Failure: number of errors
*-------------------------------------------------------------------------
*/
static int
test_particular_fp_integer(void)
{
hid_t dxpl_id;
hbool_t flag;
double src_d = (double)SCHAR_MAX;
signed char dst_c;
unsigned char *buf1 = NULL, *buf2 = NULL;
unsigned char *saved_buf1 = NULL, *saved_buf2 = NULL;
size_t src_size1, src_size2;
size_t dst_size1, dst_size2;
float src_f = (float)INT_MAX;
int dst_i;
int fill_value = 13;
int endian; /*endianness */
unsigned int fails_this_test = 0;
size_t j;
TESTING("hard particular floating number -> integer conversions");
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
H5_FAILED();
HDprintf("Can't create data transfer property list\n");
goto error;
}
/* Test conversion from double (the value is SCHAR_MAX) to signed char. */
endian = H5Tget_order(H5T_NATIVE_DOUBLE);
src_size1 = H5Tget_size(H5T_NATIVE_DOUBLE);
dst_size1 = H5Tget_size(H5T_NATIVE_SCHAR);
buf1 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size1, dst_size1));
saved_buf1 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size1, dst_size1));
HDmemcpy(buf1, &src_d, src_size1);
HDmemcpy(saved_buf1, &src_d, src_size1);
/* Register exception handling function and signal the destination is "signed char". */
flag = 1;
if (H5Pset_type_conv_cb(dxpl_id, expt_handle, &flag) < 0) {
H5_FAILED();
HDprintf("Can't register conversion callback\n");
goto error;
}
/* Do conversion */
if (H5Tconvert(H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR, (size_t)1, buf1, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
HDmemcpy(&dst_c, buf1, dst_size1);
/* Print errors */
if (dst_c != SCHAR_MAX) {
double x = 0.0;
signed char y;
if (0 == fails_this_test++)
H5_FAILED();
HDprintf(" test double to signed char:\n");
HDprintf(" src = ");
for (j = 0; j < src_size1; j++)
HDprintf(" %02x", saved_buf1[ENDIAN(src_size1, j, endian)]);
HDmemcpy(&x, saved_buf1, src_size1);
HDprintf(" %29.20e\n", x);
HDprintf(" dst = ");
for (j = 0; j < dst_size1; j++)
HDprintf(" %02x", buf1[ENDIAN(dst_size1, j, endian)]);
HDmemcpy(&y, buf1, dst_size1);
HDprintf(" %29d\n", y);
}
/* Test conversion from float (the value is INT_MAX) to int. */
src_size2 = H5Tget_size(H5T_NATIVE_FLOAT);
dst_size2 = H5Tget_size(H5T_NATIVE_INT);
buf2 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size2, dst_size2));
saved_buf2 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size2, dst_size2));
HDmemcpy(buf2, &src_f, src_size2);
HDmemcpy(saved_buf2, &src_f, src_size2);
/* signal exception handling function that the destination is "int". */
flag = 0;
/* Do conversion */
if (H5Tconvert(H5T_NATIVE_FLOAT, H5T_NATIVE_INT, (size_t)1, buf2, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
HDmemcpy(&dst_i, buf2, dst_size2);
/* Print errors */
if (dst_i != fill_value) {
float x = 0.0;
int y;
if (0 == fails_this_test++)
H5_FAILED();
HDprintf(" test float to int:\n");
HDprintf(" src = ");
for (j = 0; j < src_size2; j++)
HDprintf(" %02x", saved_buf2[ENDIAN(src_size2, j, endian)]);
HDmemcpy(&x, saved_buf2, src_size2);
HDprintf(" %29.20e\n", (double)x);
HDprintf(" dst = ");
for (j = 0; j < dst_size2; j++)
HDprintf(" %02x", buf2[ENDIAN(dst_size2, j, endian)]);
HDmemcpy(&y, buf2, dst_size2);
HDprintf(" %29d\n", y);
}
if (fails_this_test)
goto error;
if (H5Pclose(dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't close property list\n");
goto error;
}
if (buf1)
HDfree(buf1);
if (buf2)
HDfree(buf2);
if (saved_buf1)
HDfree(saved_buf1);
if (saved_buf2)
HDfree(saved_buf2);
PASSED();
return 0;
error:
HDfflush(stdout);
H5E_BEGIN_TRY
{
H5Pclose(dxpl_id);
}
H5E_END_TRY;
if (buf1)
HDfree(buf1);
if (buf2)
HDfree(buf2);
if (saved_buf1)
HDfree(saved_buf1);
if (saved_buf2)
HDfree(saved_buf2);
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_derived_flt
*
* Purpose: Tests user-define and query functions of floating-point types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, Jan 6, 2005
*
*-------------------------------------------------------------------------
*/
static int
test_derived_flt(void)
{
hid_t file = -1, tid1 = -1, tid2 = -1;
hid_t dxpl_id = -1;
char filename[1024];
size_t spos, epos, esize, mpos, msize, size;
size_t src_size, dst_size;
unsigned char *buf = NULL, *saved_buf = NULL;
int *aligned = NULL;
int endian; /*endianness */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails = 40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of floating-point types");
/* Create File */
h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof filename);
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0) {
H5_FAILED();
HDprintf("Can't create file\n");
goto error;
}
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
H5_FAILED();
HDprintf("Can't create data transfer property list\n");
goto error;
}
if ((tid1 = H5Tcopy(H5T_IEEE_F64LE)) < 0) {
H5_FAILED();
HDprintf("Can't copy data type\n");
goto error;
}
if ((tid2 = H5Tcopy(H5T_IEEE_F32LE)) < 0) {
H5_FAILED();
HDprintf("Can't copy data type\n");
goto error;
}
/*------------------------------------------------------------------------
* 1st floating-point type
* size=7 byte, precision=42 bits, offset=3 bits, mantissa size=31 bits,
* mantissa position=3, exponent size=10 bits, exponent position=34,
* exponent bias=511. It can be illustrated in little-endian order as
*
* 6 5 4 3 2 1 0
* ???????? ???SEEEE EEEEEEMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMM???
*
* To create a new floating-point type, the following properties must be
* set in the order of
* set fields -> set offset -> set precision -> set size.
* All these properties must be set before the type can function. Other
* properties can be set anytime. Derived type size cannot be expanded
* bigger than original size but can be decreased. There should be no
* holes among the significant bits. Exponent bias usually is set
* 2^(n-1)-1, where n is the exponent size.
*-----------------------------------------------------------------------*/
if (H5Tset_fields(tid1, (size_t)44, (size_t)34, (size_t)10, (size_t)3, (size_t)31) < 0) {
H5_FAILED();
HDprintf("Can't set fields\n");
goto error;
}
if (H5Tset_offset(tid1, (size_t)3) < 0) {
H5_FAILED();
HDprintf("Can't set offset\n");
goto error;
}
if (H5Tset_precision(tid1, (size_t)42) < 0) {
H5_FAILED();
HDprintf("Can't set precision 1\n");
goto error;
}
if (H5Tset_size(tid1, (size_t)7) < 0) {
H5_FAILED();
HDprintf("Can't set size\n");
goto error;
}
if (H5Tset_ebias(tid1, (size_t)511) < 0) {
H5_FAILED();
HDprintf("Can't set exponent bias\n");
goto error;
}
if (H5Tset_pad(tid1, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) {
H5_FAILED();
HDprintf("Can't set padding\n");
goto error;
}
if (H5Tcommit2(file, "new float type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
HDprintf("Can't set inpad\n");
goto error;
}
if (H5Tclose(tid1) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if ((tid1 = H5Topen2(file, "new float type 1", H5P_DEFAULT)) < 0)
FAIL_PUTS_ERROR("Can't open datatype");
if (H5Tget_fields(tid1, &spos, &epos, &esize, &mpos, &msize) < 0) {
H5_FAILED();
HDprintf("Can't get fields\n");
goto error;
}
if (spos != 44 || epos != 34 || esize != 10 || mpos != 3 || msize != 31) {
H5_FAILED();
HDprintf("Wrong field values\n");
goto error;
}
if (H5Tget_precision(tid1) != 42) {
H5_FAILED();
HDprintf("Can't get precision or wrong precision\n");
goto error;
}
if (H5Tget_offset(tid1) != 3) {
H5_FAILED();
HDprintf("Can't get offset or wrong offset\n");
goto error;
}
if ((size = H5Tget_size(tid1)) != 7) {
H5_FAILED();
HDprintf("Can't get size or wrong size\n");
goto error;
}
if (H5Tget_ebias(tid1) != 511) {
H5_FAILED();
HDprintf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from native integer to the 1st derived floating-point type.
* Then convert data from the floating-point type back to native integer.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(H5T_NATIVE_INT);
endian = H5Tget_order(H5T_NATIVE_INT);
buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, size)));
saved_buf = (unsigned char *)HDmalloc(nelmts * src_size);
HDmemset(buf, 0, nelmts * MAX(src_size, size));
HDmemset(saved_buf, 0, nelmts * src_size);
aligned = (int *)HDcalloc((size_t)1, src_size);
for (i = 0; i < nelmts * src_size; i++)
buf[i] = saved_buf[i] = (unsigned char)HDrand();
/* Convert data from native integer to derived floating-point type.
* The mantissa is big enough to retain the integer's precision. */
if (H5Tconvert(H5T_NATIVE_INT, tid1, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Convert data from the derived floating-point type back to native integer. */
if (H5Tconvert(tid1, H5T_NATIVE_INT, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for (i = 0; i < nelmts; i++) {
for (j = 0; j < src_size; j++)
if (buf[i * src_size + j] != saved_buf[i * src_size + j])
break;
if (j == src_size)
continue; /*no error*/
/* Print errors */
if (0 == fails_this_test++) {
HDsnprintf(str, sizeof(str),
"\nTesting random sw derived floating-point -> derived floating-point conversions");
HDprintf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
HDprintf(" test %u elmt %u: \n", 1, (unsigned)i);
HDprintf(" src = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDmemcpy(aligned, saved_buf + i * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *aligned);
HDprintf(" dst = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDmemcpy(aligned, buf + i * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *aligned);
if (fails_this_test >= max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
fails_this_test = 0;
HDfree(buf);
HDfree(saved_buf);
HDfree(aligned);
buf = NULL;
saved_buf = NULL;
aligned = NULL;
/*--------------------------------------------------------------------------
* 2nd floating-point type
* size=3 byte, precision=24 bits, offset=0 bits, mantissa size=16 bits,
* mantissa position=0, exponent size=7 bits, exponent position=16, exponent
* bias=63. It can be illustrated in little-endian order as
*
* 2 1 0
* SEEEEEEE MMMMMMMM MMMMMMMM
*--------------------------------------------------------------------------*/
if (H5Tset_fields(tid2, (size_t)23, (size_t)16, (size_t)7, (size_t)0, (size_t)16) < 0) {
H5_FAILED();
HDprintf("Can't set fields\n");
goto error;
}
if (H5Tset_offset(tid2, (size_t)0) < 0) {
H5_FAILED();
HDprintf("Can't set offset\n");
goto error;
}
if (H5Tset_precision(tid2, (size_t)24) < 0) {
H5_FAILED();
HDprintf("Can't set precision 2\n");
goto error;
}
if (H5Tset_size(tid2, (size_t)3) < 0) {
H5_FAILED();
HDprintf("Can't set size\n");
goto error;
}
if (H5Tset_ebias(tid2, (size_t)63) < 0) {
H5_FAILED();
HDprintf("Can't set size\n");
goto error;
}
if (H5Tset_pad(tid2, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) {
H5_FAILED();
HDprintf("Can't set padding\n");
goto error;
}
if (H5Tcommit2(file, "new float type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
HDprintf("Can't set inpad\n");
goto error;
}
if (H5Tclose(tid2) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if ((tid2 = H5Topen2(file, "new float type 2", H5P_DEFAULT)) < 0)
FAIL_PUTS_ERROR("Can't open datatype");
if (H5Tget_fields(tid2, &spos, &epos, &esize, &mpos, &msize) < 0) {
H5_FAILED();
HDprintf("Can't get fields\n");
goto error;
}
if (spos != 23 || epos != 16 || esize != 7 || mpos != 0 || msize != 16) {
H5_FAILED();
HDprintf("Wrong field values\n");
goto error;
}
if (H5Tget_precision(tid2) != 24) {
H5_FAILED();
HDprintf("Can't get precision or wrong precision\n");
goto error;
}
if (H5Tget_offset(tid2) != 0) {
H5_FAILED();
HDprintf("Can't get offset or wrong offset\n");
goto error;
}
if ((size = H5Tget_size(tid2)) != 3) {
H5_FAILED();
HDprintf("Can't get size or wrong size\n");
goto error;
}
if (H5Tget_ebias(tid2) != 63) {
H5_FAILED();
HDprintf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from the 2nd to the 1st derived floating-point type.
* Then convert data from the 1st type back to the 2nd type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid2);
dst_size = H5Tget_size(tid1);
endian = H5Tget_order(tid2);
buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, dst_size)));
saved_buf = (unsigned char *)HDmalloc(nelmts * src_size);
HDmemset(buf, 0, nelmts * MAX(src_size, dst_size));
HDmemset(saved_buf, 0, nelmts * src_size);
for (i = 0; i < nelmts * src_size; i++)
buf[i] = saved_buf[i] = (unsigned char)HDrand();
/* Convert data from the 2nd to the 1st derived floating-point type.
* The mantissa and exponent of the 2nd type are big enough to retain
* the precision and exponent power. */
if (H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Convert data from the 1st back to the 2nd derived floating-point type. */
if (H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for (i = 0; i < nelmts; i++) {
for (j = 0; j < src_size; j++)
if (buf[i * src_size + j] != saved_buf[i * src_size + j])
break;
if (j == src_size)
continue; /*no error*/
/* If original value is NaN(exponent bits are all ones, 11..11),
* the library simply sets all mantissa bits to ones. So don't
* compare values in this case.
*/
if ((buf[i * src_size + 2] == 0x7f && saved_buf[i * src_size + 2] == 0x7f) ||
(buf[i * src_size + 2] == 0xff && saved_buf[i * src_size + 2] == 0xff))
continue;
/* Print errors */
if (0 == fails_this_test++) {
HDsnprintf(str, sizeof(str),
"\nTesting random sw derived floating-point -> derived floating-point conversions");
HDprintf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
HDprintf(" test %u elmt %u: \n", 1, (unsigned)i);
HDprintf(" src = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDprintf("\n");
HDprintf(" dst = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDprintf("\n");
if (fails_this_test >= max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if (buf)
HDfree(buf);
if (saved_buf)
HDfree(saved_buf);
if (H5Tclose(tid1) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if (H5Tclose(tid2) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if (H5Pclose(dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't close property list\n");
goto error;
}
if (H5Fclose(file) < 0) {
H5_FAILED();
HDprintf("Can't close file\n");
goto error;
} /* end if */
PASSED();
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf)
HDfree(buf);
if (saved_buf)
HDfree(saved_buf);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
H5E_BEGIN_TRY
{
H5Tclose(tid1);
H5Tclose(tid2);
H5Pclose(dxpl_id);
H5Fclose(file);
}
H5E_END_TRY;
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_derived_integer
*
* Purpose: Tests user-define and query functions of integer types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Saturday, Jan 29, 2005
*
*-------------------------------------------------------------------------
*/
static int
test_derived_integer(void)
{
hid_t file = -1, tid1 = -1, tid2 = -1;
hid_t dxpl_id = -1;
char filename[1024];
size_t src_size, dst_size;
unsigned char *buf = NULL, *saved_buf = NULL;
int endian; /*endianness */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails = 40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of integer types");
/* Create File */
h5_fixname(FILENAME[1], H5P_DEFAULT, filename, sizeof filename);
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0) {
H5_FAILED();
HDprintf("Can't create file\n");
goto error;
}
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
H5_FAILED();
HDprintf("Can't create data transfer property list\n");
goto error;
}
if ((tid1 = H5Tcopy(H5T_STD_I32LE)) < 0) {
H5_FAILED();
HDprintf("Can't copy data type\n");
goto error;
}
if ((tid2 = H5Tcopy(H5T_STD_U64LE)) < 0) {
H5_FAILED();
HDprintf("Can't copy data type\n");
goto error;
}
/*--------------------------------------------------------------------------
* 1st integer type
* size=3 byte, precision=24 bits, offset=0 bits, order=big endian.
* It can be illustrated in big-endian order as
*
* 0 1 2
* SIIIIIII IIIIIIII IIIIIIII
*
* There's no specific order for these functions to define the attributes
* of a new integer type, H5Tset_precision, H5Tset_offset, H5Tset_size,
* H5Tset_order, H5Tset_pad, H5Tset_sign.
*--------------------------------------------------------------------------*/
if (H5Tset_offset(tid1, (size_t)0) < 0) {
H5_FAILED();
HDprintf("Can't set offset\n");
goto error;
}
if (H5Tset_size(tid1, (size_t)3) < 0) {
H5_FAILED();
HDprintf("Can't set size\n");
goto error;
}
if (H5Tset_precision(tid1, (size_t)24) < 0) {
H5_FAILED();
HDprintf("Can't set precision\n");
goto error;
}
if (H5Tset_order(tid1, H5T_ORDER_BE) < 0) {
H5_FAILED();
HDprintf("Can't set order\n");
goto error;
}
if (H5Tcommit2(file, "new integer type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
HDprintf("Can't commit data type\n");
goto error;
}
if (H5Tclose(tid1) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if ((tid1 = H5Topen2(file, "new integer type 1", H5P_DEFAULT)) < 0)
FAIL_PUTS_ERROR("Can't open datatype");
if (H5Tget_precision(tid1) != 24) {
H5_FAILED();
HDprintf("Can't get precision or wrong precision\n");
goto error;
}
if (H5Tget_offset(tid1) != 0) {
H5_FAILED();
HDprintf("Can't get offset or wrong offset\n");
goto error;
}
if (H5Tget_size(tid1) != 3) {
H5_FAILED();
HDprintf("Can't get size or wrong size\n");
goto error;
}
if (H5Tget_order(tid1) != H5T_ORDER_BE) {
H5_FAILED();
HDprintf("Can't get order or wrong order\n");
goto error;
}
/*--------------------------------------------------------------------------
* 2nd integer type
* size=8 byte, precision=48 bits, offset=10 bits, order=little endian.
* It can be illustrated in little-endian order as
*
* 7 6 5 4 3 2 1 0
* ??????SI IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIII?? ????????
*--------------------------------------------------------------------------*/
if (H5Tset_precision(tid2, (size_t)48) < 0) {
H5_FAILED();
HDprintf("Can't set precision\n");
goto error;
}
if (H5Tset_offset(tid2, (size_t)10) < 0) {
H5_FAILED();
HDprintf("Can't set offset\n");
goto error;
}
if (H5Tset_sign(tid2, H5T_SGN_2) < 0) {
H5_FAILED();
HDprintf("Can't set offset\n");
goto error;
}
if (H5Tcommit2(file, "new integer type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
HDprintf("Can't commit data type\n");
goto error;
}
if (H5Tclose(tid2) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if ((tid2 = H5Topen2(file, "new integer type 2", H5P_DEFAULT)) < 0)
FAIL_PUTS_ERROR("Can't open datatype");
if (H5Tget_precision(tid2) != 48) {
H5_FAILED();
HDprintf("Can't get precision or wrong precision\n");
goto error;
}
if (H5Tget_offset(tid2) != 10) {
H5_FAILED();
HDprintf("Can't get offset or wrong offset\n");
goto error;
}
if (H5Tget_size(tid2) != 8) {
H5_FAILED();
HDprintf("Can't get size or wrong size\n");
goto error;
}
if (H5Tget_sign(tid2) != H5T_SGN_2) {
H5_FAILED();
HDprintf("Can't get sign or wrong sign\n");
goto error;
}
/* Convert data from the 1st to the 2nd derived integer type.
* Then convert data from the 2nd type back to the 1st type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid1);
dst_size = H5Tget_size(tid2);
endian = H5Tget_order(tid1);
buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, dst_size)));
saved_buf = (unsigned char *)HDmalloc(nelmts * src_size);
HDmemset(buf, 0, nelmts * MAX(src_size, dst_size));
HDmemset(saved_buf, 0, nelmts * src_size);
for (i = 0; i < nelmts * src_size; i++)
buf[i] = saved_buf[i] = (unsigned char)HDrand();
/* Convert data from the 1st to the 2nd derived integer type.
* The precision of the 2nd type are big enough to retain
* the 1st type's precision. */
if (H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Convert data from the 2nd back to the 1st derived integer type. */
if (H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for (i = 0; i < nelmts; i++) {
for (j = 0; j < src_size; j++)
if (buf[i * src_size + j] != saved_buf[i * src_size + j])
break;
if (j == src_size)
continue; /*no error*/
/* Print errors */
if (0 == fails_this_test++) {
HDsnprintf(str, sizeof(str),
"\nTesting random sw derived integer -> derived integer conversions");
HDprintf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
HDprintf(" test %u elmt %u: \n", 1, (unsigned)i);
HDprintf(" src = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDprintf("\n");
HDprintf(" dst = ");
for (j = 0; j < src_size; j++)
HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]);
HDprintf("\n");
if (fails_this_test >= max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if (H5Tclose(tid1) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if (H5Tclose(tid2) < 0) {
H5_FAILED();
HDprintf("Can't close datatype\n");
goto error;
}
if (H5Pclose(dxpl_id) < 0) {
H5_FAILED();
HDprintf("Can't close property list\n");
goto error;
}
if (H5Fclose(file) < 0) {
H5_FAILED();
HDprintf("Can't close file\n");
goto error;
} /* end if */
HDfree(buf);
HDfree(saved_buf);
PASSED();
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf)
HDfree(buf);
if (saved_buf)
HDfree(saved_buf);
HDfflush(stdout);
H5E_BEGIN_TRY
{
H5Tclose(tid1);
H5Tclose(tid2);
H5Pclose(dxpl_id);
H5Fclose(file);
}
H5E_END_TRY;
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_1
*
* Purpose: Test conversion of integer values from SRC to DST.
* These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR
* H5T_NATIVE_SHORT H5T_NATIVE_USHORT
* H5T_NATIVE_INT H5T_NATIVE_UINT
* H5T_NATIVE_LONG H5T_NATIVE_ULONG
* H5T_NATIVE_LLONG H5T_NATIVE_ULLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
size_t nelmts = 0; /*num values per test */
const size_t max_fails = 8; /*max number of failures*/
size_t fails_all_tests = 0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type, dst_type; /*data types */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
int endian; /*machine endianness */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
size_t j, k; /*counters */
unsigned char *hw = NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
H5T_sign_t src_sign; /*source sign type */
H5T_sign_t dst_sign; /*dst sign type */
void *aligned = NULL; /*aligned temp buffer */
signed char hw_char;
unsigned char hw_uchar;
short hw_short;
unsigned short hw_ushort;
int hw_int;
unsigned hw_uint;
long hw_long;
unsigned long hw_ulong;
long long hw_llong;
unsigned long long hw_ullong;
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
}
else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
}
else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
}
else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
}
else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
}
else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
}
else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
}
else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
}
else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
}
else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
}
else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
}
else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
}
else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
}
else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
}
else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
}
else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
}
else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
}
else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
}
else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
}
else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
}
else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER == src_type || OTHER == dst_type) {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
else {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
}
/* Some information about datatypes */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
src_sign = H5Tget_sign(src);
dst_sign = H5Tget_sign(dst);
aligned = HDcalloc((size_t)1, sizeof(long long));
/* Allocate and initialize the source buffer through macro INIT_INTEGER. The BUF
* will be used for the conversion while the SAVED buffer will be
* used for the comparison later.
*/
if (src_type == INT_SCHAR) {
INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_UCHAR) {
INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_SHORT) {
INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_USHORT) {
INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_INT) {
INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_UINT) {
INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_LONG) {
INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_LLONG) {
INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else
goto error;
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT) < 0)
goto error;
/* Check the results from the library against hardware */
for (j = 0; j < nelmts; j++) {
if (INT_SCHAR == dst_type) {
hw = (unsigned char *)&hw_char;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_char = (signed char)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_char = (signed char)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_char = (signed char)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_char = (signed char)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_char = (signed char)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_char = (signed char)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_char = (signed char)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_char = (signed char)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_char = (signed char)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_char = (signed char)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_UCHAR == dst_type) {
hw = (unsigned char *)&hw_uchar;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_uchar = (unsigned char)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_uchar = (unsigned char)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_uchar = (unsigned char)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_uchar = (unsigned char)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_uchar = (unsigned char)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_uchar = (unsigned char)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_uchar = (unsigned char)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_uchar = (unsigned char)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_uchar = (unsigned char)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_uchar = (unsigned char)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_SHORT == dst_type) {
hw = (unsigned char *)&hw_short;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(char), sizeof(char));
hw_short = (short)(*((char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_short = (short)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_short = (short)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_short = (short)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_short = (short)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_short = (short)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_short = (short)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_short = (short)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_short = (short)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_short = (short)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_USHORT == dst_type) {
hw = (unsigned char *)&hw_ushort;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_ushort = (unsigned short)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_ushort = (unsigned short)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_ushort = (unsigned short)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_ushort = (unsigned short)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_ushort = (unsigned short)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_ushort = (unsigned short)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_ushort = (unsigned short)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_ushort = (unsigned short)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_ushort = (unsigned short)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_ushort = (unsigned short)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_INT == dst_type) {
hw = (unsigned char *)&hw_int;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_int = (int)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_int = (int)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_int = (int)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_int = (int)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_int = (int)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_int = (int)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_int = (int)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_int = (int)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_int = (int)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_int = (int)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_UINT == dst_type) {
hw = (unsigned char *)&hw_uint;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_uint = (unsigned int)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_uint = (unsigned int)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_uint = (unsigned int)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_uint = (unsigned int)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_uint = (unsigned int)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_uint = (unsigned int)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_uint = (unsigned int)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_uint = (unsigned int)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_uint = (unsigned int)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_uint = (unsigned int)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_LONG == dst_type) {
hw = (unsigned char *)&hw_long;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_long = (long int)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_long = (long int)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_long = (long int)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_long = (long int)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_long = (long int)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_long = (long int)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_long = (long int)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_long = (long int)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_long = (long int)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_long = (long int)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_ULONG == dst_type) {
hw = (unsigned char *)&hw_ulong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_ulong = (unsigned long)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_ulong = (unsigned long)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_ulong = (unsigned long)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_ulong = (unsigned long)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_ulong = (unsigned long)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_ulong = (unsigned long)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_ulong = (unsigned long)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_ulong = (unsigned long)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_ulong = (unsigned long)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_ulong = (unsigned long)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_LLONG == dst_type) {
hw = (unsigned char *)&hw_llong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(char), sizeof(char));
hw_llong = (long long)(*((char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_llong = (long long)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_llong = (long long)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_llong = (long long)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_llong = (long long)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_llong = (long long)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_llong = (long long)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_llong = (long long)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_llong = (long long)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_llong = (long long)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_ULLONG == dst_type) {
hw = (unsigned char *)&hw_ullong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_ullong = (unsigned long long)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_ullong = (unsigned long long)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_ullong = (unsigned long long)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_ullong = (unsigned long long)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_ullong = (unsigned long long)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_ullong = (unsigned long long)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_ullong = (unsigned long long)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_ullong = (unsigned long long)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_ullong = (unsigned long long)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_ullong = (unsigned long long)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
HDassert(dst_nbits % 8 == 0);
/* Are the two results the same? */
for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++)
if (buf[j * dst_size + k] != hw[k])
break;
if (k == dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
for (k = 0; k < src_size; k++)
src_bits[src_size - (k + 1)] = saved[j * src_size + ENDIAN(src_size, k, endian)];
for (k = 0; k < dst_size; k++)
dst_bits[dst_size - (k + 1)] = buf[j * dst_size + ENDIAN(dst_size, k, endian)];
/*
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*/
if (H5T_SGN_2 == src_sign && H5T_SGN_2 == dst_sign) {
if (src_nbits > dst_nbits) {
if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) &&
H5T__bit_find(src_bits, dst_nbits - 1, (src_nbits - dst_nbits), H5T_BIT_MSB, 1) >= 0) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
else if (1 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) &&
H5T__bit_find(src_bits, (size_t)0, src_nbits - 1, H5T_BIT_MSB, 0) + 1 >=
(ssize_t)dst_nbits) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (1 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 1) < 0)
continue; /*no error*/
}
}
else if (src_nbits < dst_nbits) {
/* Source is smaller than the destination */
if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) {
/*
* Source is positive, so the excess bits in the
* destination should be set to 0's.
*/
if (0 == H5T__bit_get_d(dst_bits, src_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, src_nbits, dst_nbits - src_nbits, H5T_BIT_LSB, 1) < 0)
continue; /*no error*/
}
else {
/*
* Source is negative, so the excess bits in the
* destination should be set to 1's.
*/
if (1 == H5T__bit_get_d(dst_bits, src_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, src_nbits, dst_nbits - src_nbits, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
}
}
else if (H5T_SGN_2 == src_sign && H5T_SGN_NONE == dst_sign) {
if (H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 1) < 0)
continue; /*no error*/
}
else if (src_nbits > dst_nbits &&
H5T__bit_find(src_bits, dst_nbits - 1, src_nbits - dst_nbits, H5T_BIT_LSB, 1) >= 0) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
}
else if (H5T_SGN_NONE == src_sign && H5T_SGN_2 == dst_sign) {
if (src_nbits >= dst_nbits &&
H5T__bit_find(src_bits, dst_nbits - 1, (src_nbits - dst_nbits) + 1, H5T_BIT_LSB, 1) >= 0) {
/*
* The source value has a magnitude that is larger than
* the destination can handle. The destination should be
* set to the largest possible positive value: 0x7f...f
*/
if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
}
else {
if (src_nbits > dst_nbits &&
H5T__bit_find(src_bits, dst_nbits, src_nbits - dst_nbits, H5T_BIT_LSB, 1) >= 0) {
/*
* The unsigned source has a value which is too large for
* the unsigned destination. The destination should be
* set to the largest possible value: 0xff...f
*/
if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
}
/* Print errors */
if (0 == fails_this_test++)
H5_FAILED();
HDprintf(" elmt %u\n", (unsigned)j);
HDprintf(" src = ");
for (k = 0; k < src_size; k++)
HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, endian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
HDprintf(" %29d\n", (int)*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
HDprintf(" %29hd\n", *((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
HDprintf(" %29hu\n", *((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
HDprintf(" %29u\n", *((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
HDprintf(" %29ld\n", *((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
HDprintf(" %29lu\n", *((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
HDfprintf(stdout, " %29lld\n", *((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
HDprintf(" dst = ");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, endian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf + j * sizeof(signed char), sizeof(signed char));
HDprintf(" %29d\n", (int)*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf + j * sizeof(unsigned char), sizeof(unsigned char));
HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf + j * sizeof(short), sizeof(short));
HDprintf(" %29hd\n", *((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf + j * sizeof(unsigned short), sizeof(unsigned short));
HDprintf(" %29hu\n", *((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf + j * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf + j * sizeof(unsigned), sizeof(unsigned));
HDprintf(" %29u\n", *((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf + j * sizeof(long), sizeof(long));
HDprintf(" %29ld\n", *((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf + j * sizeof(unsigned long), sizeof(unsigned long));
HDprintf(" %29lu\n", *((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(long long));
HDfprintf(stdout, " %29lld\n", *((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(unsigned long long));
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
HDprintf(" ans = ");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", hw[ENDIAN(dst_size, k, endian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDprintf(" %29d\n", (int)*((signed char *)((void *)hw)));
break;
case INT_UCHAR:
HDprintf(" %29u\n", (unsigned)*((unsigned char *)((void *)hw)));
break;
case INT_SHORT:
HDprintf(" %29hd\n", *((short *)((void *)hw)));
break;
case INT_USHORT:
HDprintf(" %29hu\n", *((unsigned short *)((void *)hw)));
break;
case INT_INT:
HDprintf(" %29d\n", *((int *)((void *)hw)));
break;
case INT_UINT:
HDprintf(" %29u\n", *((unsigned *)((void *)hw)));
break;
case INT_LONG:
HDprintf(" %29ld\n", *((long *)((void *)hw)));
break;
case INT_ULONG:
HDprintf(" %29lu\n", *((unsigned long *)((void *)hw)));
break;
case INT_LLONG:
HDfprintf(stdout, " %29lld\n", *((long long *)((void *)hw)));
break;
case INT_ULLONG:
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)((void *)hw)));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
if (++fails_all_tests >= max_fails) {
HDputs(" maximum failures reached, aborting test...");
HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)");
goto done;
}
}
PASSED();
done:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_2
*
* Purpose: Tests overlap calculates in H5T__conv_i_i(), which should be
* the same as for H5T__conv_f_f() and H5T__conv_s_s().
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Friday, April 30, 1999
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_2(void)
{
int i, j;
hid_t src_type, dst_type;
char *buf;
HDprintf("%-70s", "Testing overlap calculations");
HDfflush(stdout);
buf = (char *)HDcalloc(TMP_BUF_DIM1, TMP_BUF_DIM2);
HDassert(buf);
for (i = 1; i <= TMP_BUF_DIM1; i++) {
for (j = 1; j <= TMP_BUF_DIM1; j++) {
/* Source type */
src_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(src_type, (size_t)i);
/* Destination type */
dst_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(dst_type, (size_t)j);
/*
* Conversion. If overlap calculations aren't right then an
* assertion will fail in H5T__conv_i_i()
*/
H5Tconvert(src_type, dst_type, (size_t)TMP_BUF_DIM2, buf, NULL, H5P_DEFAULT);
H5Tclose(src_type);
H5Tclose(dst_type);
}
}
PASSED();
HDfree(buf);
return 0;
}
/*-------------------------------------------------------------------------
* Function: my_isnan
*
* Purpose: Determines whether VAL points to NaN.
*
* Return: TRUE or FALSE
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
*-------------------------------------------------------------------------
*/
static int
my_isnan(dtype_t type, void *val)
{
int retval = 0;
char s[256];
if (FLT_FLOAT == type) {
float x = 0.0;
HDmemcpy(&x, val, sizeof(float));
retval = isnan(x);
}
else if (FLT_DOUBLE == type) {
double x = 0.0;
HDmemcpy(&x, val, sizeof(double));
retval = isnan(x);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (FLT_LDOUBLE == type) {
long double x = 0.0L;
HDmemcpy(&x, val, sizeof(long double));
retval = isnan(x);
#endif
}
else {
return 0;
}
/*
* Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
* the result contains a NaN string.
*/
if (!retval) {
if (FLT_FLOAT == type) {
float x = 0.0;
HDmemcpy(&x, val, sizeof(float));
HDsnprintf(s, sizeof(s), "%g", (double)x);
}
else if (FLT_DOUBLE == type) {
double x = 0.0;
HDmemcpy(&x, val, sizeof(double));
HDsnprintf(s, sizeof(s), "%g", x);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (FLT_LDOUBLE == type) {
long double x = 0.0L;
HDmemcpy(&x, val, sizeof(long double));
HDsnprintf(s, sizeof(s), "%Lg", x);
#endif
}
else {
return 0;
}
if (HDstrstr(s, "NaN") || HDstrstr(s, "NAN") || HDstrstr(s, "nan"))
retval = 1;
}
return retval;
}
/*-------------------------------------------------------------------------
* Function: my_isinf
*
* Purpose: Determines whether VAL points to +/-infinity.
*
* Return: TRUE or FALSE
*
* Programmer: Raymond Lu
* Monday, June 20, 2005
*
*-------------------------------------------------------------------------
*/
static int
my_isinf(int endian, const unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos,
size_t esize)
{
unsigned char *bits;
int retval = 0;
size_t i;
bits = (unsigned char *)HDcalloc((size_t)1, size);
for (i = 0; i < size; i++)
bits[size - (i + 1)] = *(val + ENDIAN(size, i, endian));
if (H5T__bit_find(bits, mpos, msize, H5T_BIT_LSB, 1) < 0 &&
H5T__bit_find(bits, epos, esize, H5T_BIT_LSB, 0) < 0)
retval = 1;
HDfree(bits);
return retval;
}
/*-------------------------------------------------------------------------
* Function: test_conv_flt_1
*
* Purpose: Test conversion of floating point values from SRC to
* DST. These types should be H5T_NATIVE_FLOAT,
* H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, June 23, 1998
*
*-------------------------------------------------------------------------
*/
static int
test_conv_flt_1(const char *name, int run_test, hid_t src, hid_t dst)
{
dtype_t src_type, dst_type; /*data types */
size_t nelmts = 0; /*num values per test */
const size_t max_fails = 8; /*max number of failures*/
size_t fails_all_tests = 0; /*number of failures */
size_t fails_this_test; /*fails for this test */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
char str[256]; /*hello string */
void *aligned = NULL; /*aligned buffer */
float hw_f; /*hardware-converted */
double hw_d; /*hardware-converted */
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
long double hw_ld; /*hardware-converted */
#endif
unsigned char *hw = NULL; /*ptr to hardware-conv'd*/
int underflow; /*underflow occurred */
int overflow = 0; /*overflow occurred */
size_t j, k; /*counters */
int sendian; /* source type endianness */
int dendian; /* Destination type endianness */
size_t dst_ebias; /* Destination type's exponent bias */
size_t src_epos; /* Source type's exponent position */
size_t src_esize; /* Source type's exponent size */
size_t dst_epos; /* Destination type's exponent position */
size_t dst_esize; /* Destination type's exponent size */
size_t dst_mpos; /* Destination type's mantissa position */
size_t dst_msize; /* Destination type's mantissa size */
size_t src_nbits; /* source length in bits */
size_t dst_nbits; /* dst length in bits */
#ifdef HANDLE_SIGFPE
pid_t child_pid; /*process ID of child */
int status; /*child exit status */
/*
* Some systems generage SIGFPE during floating point overflow and we
* cannot assume that we can continue from such a signal. Therefore, we
* fork here and let the child run the test and return the number of
* failures with the exit status.
*/
HDfflush(stdout);
HDfflush(stderr);
if ((child_pid = HDfork()) < 0) {
HDperror("fork");
return 1;
}
else if (child_pid > 0) {
while (child_pid != HDwaitpid(child_pid, &status, 0)) /*void*/
;
if (WIFEXITED(status) && 255 == WEXITSTATUS(status)) {
return 0; /*child exit after catching SIGFPE*/
}
else if (WIFEXITED(status)) {
return WEXITSTATUS(status);
}
else if (WIFSIGNALED(status)) {
HDsnprintf(str, sizeof(str), " Child caught signal %d.", WTERMSIG(status));
HDputs(str);
return 1; /*child exit after catching non-SIGFPE signal */
}
else {
HDputs(" Child didn't exit normally.");
return 1;
}
}
#endif
/*
* The remainder of this function is executed only by the child if
* HANDLE_SIGFPE is defined.
*/
HDsignal(SIGFPE, fpe_handler);
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
}
else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
}
else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
}
else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
}
else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (sizeof(float) == sizeof(double))
HDputs("Sizeof(float)==sizeof(double) - some tests may not be sensible.");
if (OTHER == src_type || OTHER == dst_type) {
if (!HDstrcmp(name, "noop"))
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_SPECIAL)
HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_NORMAL)
HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_DENORM)
HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name,
dst_type_name);
HDprintf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
else {
if (!HDstrcmp(name, "noop"))
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_SPECIAL)
HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_NORMAL)
HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_DENORM)
HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name,
dst_type_name);
HDprintf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
}
/* Get "interesting" values */
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
dst_ebias = H5Tget_ebias(dst);
H5Tget_fields(src, NULL, &src_epos, &src_esize, NULL, NULL);
H5Tget_fields(dst, NULL, &dst_epos, &dst_esize, &dst_mpos, &dst_msize);
sendian = H5Tget_order(src);
dendian = H5Tget_order(dst);
/* Allocate buffers */
aligned = HDcalloc((size_t)1, MAX(sizeof(long double), sizeof(double)));
/* Allocate and initialize the source buffer through macro INIT_FP_NORM or INIT_FP_SPECIAL.
* The BUF will be used for the conversion while the SAVED buffer will be used for
* the comparison later. INIT_FP_NORM will fill in the buffer with regular values like
* normalized and denormalized values; INIT_FP_SPECIAL will fill with special values
* like infinity, NaN.
*/
switch (run_test) {
case TEST_NOOP:
case TEST_NORMAL:
if (src_type == FLT_FLOAT) {
INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf,
saved, nelmts);
}
else if (src_type == FLT_DOUBLE) {
INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size,
buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (src_type == FLT_LDOUBLE) {
INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size,
dst_size, buf, saved, nelmts);
#endif
}
else
goto error;
break;
case TEST_DENORM:
if (src_type == FLT_FLOAT) {
INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved,
nelmts);
}
else if (src_type == FLT_DOUBLE) {
INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved,
nelmts);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (src_type == FLT_LDOUBLE) {
INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved,
nelmts);
#endif
}
else
goto error;
break;
case TEST_SPECIAL:
if (src_type == FLT_FLOAT) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts);
}
else if (src_type == FLT_DOUBLE) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (src_type == FLT_LDOUBLE) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts);
#endif
}
else
goto error;
break;
default:
goto error;
}
/* Perform the conversion in software */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT) < 0)
goto error;
/* Check the software results against the hardware */
for (j = 0; j < nelmts; j++) {
underflow = 0;
hw_f = 911.0F;
hw_d = 911.0;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
hw_ld = 911.0L;
#endif
/* The hardware conversion */
/* Check for underflow when src is a "larger" float than dst.*/
if (FLT_FLOAT == src_type) {
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
if (FLT_FLOAT == dst_type) {
hw_f = *((float *)aligned);
hw = (unsigned char *)&hw_f;
}
else if (FLT_DOUBLE == dst_type) {
hw_d = (double)*((float *)aligned);
hw = (unsigned char *)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else {
hw_ld = (long double)*((float *)aligned);
hw = (unsigned char *)&hw_ld;
#endif
}
}
else if (FLT_DOUBLE == src_type) {
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
if (FLT_FLOAT == dst_type) {
hw_f = (float)(*((double *)aligned));
hw = (unsigned char *)&hw_f;
underflow = HDfabs(*((double *)aligned)) < (double)FLT_MIN;
overflow = HDfabs(*((double *)aligned)) > (double)FLT_MAX;
}
else if (FLT_DOUBLE == dst_type) {
hw_d = *((double *)aligned);
hw = (unsigned char *)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else {
hw_ld = (long double)*((double *)aligned);
hw = (unsigned char *)&hw_ld;
#endif
}
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else {
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
if (FLT_FLOAT == dst_type) {
hw_f = (float)*((long double *)aligned);
hw = (unsigned char *)&hw_f;
underflow = HDfabsl(*((long double *)aligned)) < (long double)FLT_MIN;
overflow = HDfabsl(*((long double *)aligned)) > (long double)FLT_MAX;
}
else if (FLT_DOUBLE == dst_type) {
hw_d = (double)*((long double *)aligned);
hw = (unsigned char *)&hw_d;
underflow = HDfabsl(*((long double *)aligned)) < (long double)DBL_MIN;
overflow = HDfabsl(*((long double *)aligned)) > (long double)DBL_MAX;
}
else {
hw_ld = *((long double *)aligned);
hw = (unsigned char *)&hw_ld;
}
#endif
}
/* For Intel machines, the size of "long double" is 12 bytes, precision
* is 80 bits; for Intel IA64 and AMD processors, the size of "long double"
* is 16 bytes, precision is 80 bits. During hardware conversion, the
* last few unused bytes may have garbage in them. Clean them out with
* 0s before compare the values.
*/
if (sendian == H5T_ORDER_LE && dst_type == FLT_LDOUBLE) {
size_t q;
for (q = dst_nbits / 8; q < dst_size; q++) {
buf[j * dst_size + q] = 0x00;
hw[q] = 0x00;
}
}
/* Are the two results the same? */
for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++)
if (buf[j * dst_size + k] != hw[k])
break;
if (k == dst_size)
continue; /*no error*/
/*
* Assume same if both results are NaN. There are many NaN bit
* patterns and the software doesn't attempt to emulate the
* hardware in this regard. Instead, software uses a single bit
* pattern for NaN by setting the significand to all ones.
*/
if (FLT_FLOAT == dst_type && my_isnan(dst_type, buf + j * sizeof(float)) && my_isnan(dst_type, hw)) {
continue;
}
else if (FLT_DOUBLE == dst_type && my_isnan(dst_type, buf + j * sizeof(double)) &&
my_isnan(dst_type, hw)) {
continue;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (FLT_LDOUBLE == dst_type && my_isnan(dst_type, buf + j * sizeof(long double)) &&
my_isnan(dst_type, hw)) {
continue;
#endif
}
/*
* Assume same if hardware result is NaN. This is because the
* hardware conversions on some machines return NaN instead of
* overflowing to +Inf or -Inf or underflowing to +0 or -0.
*/
if (my_isnan(dst_type, hw))
continue;
/*
* Instead of matching down to the bit, just make sure the
* exponents are the same and the mantissa is the same to a
* certain precision. This is needed on machines that don't
* round as expected.
* If the src number is smaller than the dst MIN float number,
* consider it okay if the converted sw and hw dst are both
* less than or equal to the dst MIN float number.
* If overflow happens when the src value is greater than
* the maximum dst value, the library assign INFINITY to dst.
* This might be different from what the compiler does, i.e.
* the SGI compiler assigns the dst's maximal value.
*/
{
double check_mant[2];
int check_expo[2];
if (FLT_FLOAT == dst_type) {
float x = 0.0;
HDmemcpy(&x, &buf[j * dst_size], sizeof(float));
if (underflow && HDfabsf(x) <= FLT_MIN && HDfabsf(hw_f) <= FLT_MIN)
continue; /* all underflowed, no error */
if (overflow && my_isinf(dendian, buf + j * sizeof(float), dst_size, dst_mpos, dst_msize,
dst_epos, dst_esize))
continue; /* all overflowed, no error */
check_mant[0] = (double)HDfrexpf(x, check_expo + 0);
check_mant[1] = (double)HDfrexpf(hw_f, check_expo + 1);
}
else if (FLT_DOUBLE == dst_type) {
double x = 0.0;
HDmemcpy(&x, &buf[j * dst_size], sizeof(double));
if (underflow && HDfabs(x) <= DBL_MIN && HDfabs(hw_d) <= DBL_MIN)
continue; /* all underflowed, no error */
if (overflow && my_isinf(dendian, buf + j * sizeof(double), dst_size, dst_mpos, dst_msize,
dst_epos, dst_esize))
continue; /* all overflowed, no error */
check_mant[0] = HDfrexp(x, check_expo + 0);
check_mant[1] = HDfrexp(hw_d, check_expo + 1);
#if (H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE)
}
else {
long double x = 0.0L;
HDmemcpy(&x, &buf[j * dst_size], sizeof(long double));
/* dst is largest float, no need to check underflow. */
check_mant[0] = (double)HDfrexpl(x, check_expo + 0);
check_mant[1] = (double)HDfrexpl(hw_ld, check_expo + 1);
#endif
}
/* Special check for denormalized values */
if (check_expo[0] < (-(int)dst_ebias) || check_expo[1] < (-(int)dst_ebias)) {
int expo_diff = check_expo[0] - check_expo[1];
int valid_bits =
(int)((dst_ebias + dst_msize) + (size_t)MIN(check_expo[0], check_expo[1])) - 1;
double epsilon = 1.0;
/* Re-scale the mantissas based on any exponent difference */
if (expo_diff != 0)
check_mant[0] = HDldexp(check_mant[0], expo_diff);
/* Compute the proper epsilon */
epsilon = HDldexp(epsilon, -valid_bits);
/* Check for "close enough" fit with scaled epsilon value */
if (HDfabs(check_mant[0] - check_mant[1]) <= epsilon)
continue;
} /* end if */
else {
if (check_expo[0] == check_expo[1] &&
HDfabs(check_mant[0] - check_mant[1]) < (double)FP_EPSILON)
continue;
} /* end else */
}
if (0 == fails_this_test++) {
if (run_test == TEST_NOOP || run_test == TEST_NORMAL) {
H5_FAILED();
}
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) {
H5_WARNING();
}
}
HDprintf(" elmt %u\n", (unsigned)j);
HDprintf(" src =");
for (k = 0; k < src_size; k++)
HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, sendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), "");
if (FLT_FLOAT == src_type) {
float x = 0.0;
HDmemcpy(&x, &saved[j * src_size], sizeof(float));
HDprintf(" %29.20e\n", (double)x);
}
else if (FLT_DOUBLE == src_type) {
double x = 0.0;
HDmemcpy(&x, &saved[j * src_size], sizeof(double));
HDprintf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else {
long double x = 0.0L;
HDmemcpy(&x, &saved[j * src_size], sizeof(long double));
HDfprintf(stdout, " %29.20Le\n", x);
#endif
}
HDprintf(" dst =");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, dendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
if (FLT_FLOAT == dst_type) {
float x = 0.0;
HDmemcpy(&x, &buf[j * dst_size], sizeof(float));
HDprintf(" %29.20e\n", (double)x);
}
else if (FLT_DOUBLE == dst_type) {
double x = 0.0;
HDmemcpy(&x, &buf[j * dst_size], sizeof(double));
HDprintf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else {
long double x = 0.0L;
HDmemcpy(&x, &buf[j * dst_size], sizeof(long double));
HDfprintf(stdout, " %29.20Le\n", x);
#endif
}
HDprintf(" ans =");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", hw[ENDIAN(dst_size, k, dendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
if (FLT_FLOAT == dst_type)
HDprintf(" %29.20e\n", (double)hw_f);
else if (FLT_DOUBLE == dst_type)
HDprintf(" %29.20e\n", hw_d);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
else
HDfprintf(stdout, " %29.20Le\n", hw_ld);
#endif
/* If the source is normalized values, print out error message; if it is
* denormalized or special values, print out warning message.*/
if (++fails_all_tests >= max_fails) {
if (run_test == TEST_NORMAL)
HDputs(" maximum failures reached, aborting test...");
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
HDputs(" maximum warnings reached, aborting test...");
HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)");
goto done;
}
}
if (!fails_all_tests)
PASSED();
done:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
if (run_test == TEST_NOOP || run_test == TEST_NORMAL)
HDexit(MIN((int)fails_all_tests, 254));
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
HDexit(EXIT_SUCCESS);
HDassert(0 && "Should not reach this point!");
return 1;
#else
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
/* If the source is normalized values, treat the failures as error;
* if it is denormalized or special values, treat the failure as warning.*/
if (run_test == TEST_NOOP || run_test == TEST_NORMAL)
return (int)fails_all_tests;
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
return 0;
#endif
error:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
if (run_test == TEST_NOOP || run_test == TEST_NORMAL)
HDexit(MIN(MAX((int)fails_all_tests, 1), 254));
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
HDexit(EXIT_FAILURE);
HDassert(0 && "Should not reach this point!");
return 1;
#else
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
if (run_test == TEST_NOOP || run_test == TEST_NORMAL)
return MAX((int)fails_all_tests, 1);
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
return 1;
#endif
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_fp
*
* Purpose: Test conversion between integer and float values
* from SRC to DST. These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_FLOAT
* H5T_NATIVE_SHORT H5T_NATIVE_DOUBLE
* H5T_NATIVE_INT H5T_NATIVE_LDOUBLE
* H5T_NATIVE_LONG
* H5T_NATIVE_LLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, November 6, 2003
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_fp(const char *name, int run_test, hid_t src, hid_t dst)
{
hid_t dxpl_id; /*dataset transfer property list*/
int fill_value = 9; /*fill value for conversion exception*/
H5T_conv_except_func_t op; /*returned callback function for conversion exception*/
void *user_data; /*returned pointer to user data passed in to the callback*/
hbool_t except_set = FALSE; /*whether user's exception handling is set*/
size_t nelmts = 0; /*num values per test */
const size_t max_fails = 40; /*max number of failures*/
size_t fails_all_tests = 0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type; /*data types */
dtype_t dst_type; /*data types */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
int sendian; /*source endianness */
int dendian; /*destination endianness */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
size_t j, k; /*counters */
unsigned char *hw = NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
void *aligned = NULL; /*aligned temp buffer */
float hw_float = 0;
double hw_double = 0;
long double hw_ldouble = 0;
signed char hw_schar = 0;
unsigned char hw_uchar = 0;
short hw_short = 0;
unsigned short hw_ushort = 0;
int hw_int = 0;
unsigned hw_uint = 0;
long hw_long = 0;
unsigned long hw_ulong = 0;
long long hw_llong = 0;
unsigned long long hw_ullong = 0;
/* What is the name of the source type */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
}
else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
}
else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
}
else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
}
else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
}
else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
}
else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
}
else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
}
else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
}
else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
}
else if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
}
else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
}
else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
/* What is the name of the destination type */
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
}
else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
}
else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
}
else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
}
else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
}
else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
}
else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
}
else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
}
else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
}
else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
}
else if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
}
else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
}
else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER == src_type || OTHER == dst_type) {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
if ((INT_SCHAR == src_type || INT_UCHAR == src_type || INT_SHORT == src_type || INT_USHORT == src_type ||
INT_INT == src_type || INT_UINT == src_type || INT_LONG == src_type || INT_ULONG == src_type ||
INT_LLONG == src_type || INT_ULLONG == src_type) &&
(FLT_FLOAT != dst_type && FLT_DOUBLE != dst_type && FLT_LDOUBLE != dst_type)) {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
H5_FAILED();
HDputs(" 1. Not an integer-float conversion.");
goto error;
}
if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type || FLT_LDOUBLE == src_type) &&
(INT_SCHAR != dst_type && INT_UCHAR != dst_type && INT_SHORT != dst_type && INT_USHORT != dst_type &&
INT_INT != dst_type && INT_UINT != dst_type && INT_LONG != dst_type && INT_ULONG != dst_type &&
INT_LLONG != dst_type && INT_ULLONG != dst_type)) {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
H5_FAILED();
HDputs(" 2. Not a float-integer conversion.");
goto error;
}
if (INT_SCHAR == src_type || INT_UCHAR == src_type || INT_SHORT == src_type || INT_USHORT == src_type ||
INT_INT == src_type || INT_UINT == src_type || INT_LONG == src_type || INT_ULONG == src_type ||
INT_LLONG == src_type || INT_ULLONG == src_type) {
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name);
HDprintf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
}
else {
if (run_test == TEST_NORMAL)
HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name,
dst_type_name);
else if (run_test == TEST_DENORM)
HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name,
dst_type_name);
else
HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name,
dst_type_name);
HDprintf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
}
/* Some information about datatypes */
sendian = H5Tget_order(src);
dendian = H5Tget_order(dst);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
aligned = HDcalloc((size_t)1, MAX(sizeof(long double), sizeof(long long)));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* This is for some Linux systems where long double has the size
* 12 bytes but precision is 10 bytes. The 2 unused bytes may
* have garbage causing wrong value comparison.
*/
HDmemset(&hw_ldouble, 0, sizeof(long double));
/* Create a dataset transfer property list and datatype conversion
* exception handler function and pass in fill value. This is mainly
* for NetCDF compatibility, which requests fill in fill value when
* conversion exception happens. We only test (unsigned) int - float
* and float - (unsigned) int conversions, which should cover more cases.
*/
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0)
goto error;
if ((src_type == INT_INT && dst_type == FLT_FLOAT) || (src_type == INT_UINT && dst_type == FLT_FLOAT) ||
(src_type == FLT_FLOAT && dst_type == INT_UINT) || (src_type == FLT_FLOAT && dst_type == INT_INT)) {
if (H5Pset_type_conv_cb(dxpl_id, except_func, &fill_value) < 0)
goto error;
else
except_set = TRUE;
if (H5Pget_type_conv_cb(dxpl_id, &op, &user_data) < 0)
goto error;
if (op != except_func || *(int *)user_data != fill_value)
goto error;
}
/* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer,
* INIT_FP_NORM if floating-point. The BUF will be used for the conversion while the SAVED buffer
* will be used for the comparison later.
*/
if (src_type == INT_SCHAR) {
INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_UCHAR) {
INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_SHORT) {
INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_USHORT) {
INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_INT) {
INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_UINT) {
INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_LONG) {
INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_LLONG) {
INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
}
else if (src_type == FLT_FLOAT) {
if (run_test == TEST_NORMAL) {
INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf,
saved, nelmts);
}
else if (run_test == TEST_DENORM) {
INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts);
}
else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts);
}
}
else if (src_type == FLT_DOUBLE) {
if (run_test == TEST_NORMAL) {
INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf,
saved, nelmts);
}
else if (run_test == TEST_DENORM) {
INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts);
}
else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts);
}
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
}
else if (src_type == FLT_LDOUBLE) {
if (run_test == TEST_NORMAL) {
INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size,
dst_size, buf, saved, nelmts);
}
else if (run_test == TEST_DENORM) {
INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved,
nelmts);
}
else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts);
}
#endif
}
else
goto error;
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, dxpl_id) < 0)
goto error;
/* Check the results from the library against hardware */
for (j = 0; j < nelmts; j++) {
if (FLT_FLOAT == src_type || FLT_DOUBLE == src_type || FLT_LDOUBLE == src_type)
if (my_isnan(src_type, saved + j * src_size))
continue;
if (FLT_FLOAT == dst_type) {
hw = (unsigned char *)&hw_float;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_float = (float)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_float = (float)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_float = (float)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_float = (float)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_float = (float)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_float = (float)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_float = (float)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_float = (float)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_float = (float)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_float = (float)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (FLT_DOUBLE == dst_type) {
hw = (unsigned char *)&hw_double;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_double = (double)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_double = (double)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_double = (double)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_double = (double)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_double = (double)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_double = (double)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_double = (double)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_double = (double)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_double = (double)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_double = (double)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (FLT_LDOUBLE == dst_type) {
hw = (unsigned char *)&hw_ldouble;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
hw_ldouble = (long double)(*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
hw_ldouble = (long double)(*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
hw_ldouble = (long double)(*((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
hw_ldouble = (long double)(*((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
hw_ldouble = (long double)(*((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
hw_ldouble = (long double)(*((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
hw_ldouble = (long double)(*((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
hw_ldouble = (long double)(*((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
hw_ldouble = (long double)(*((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
hw_ldouble = (long double)(*((unsigned long long *)aligned));
break;
case FLT_FLOAT:
case FLT_DOUBLE:
case FLT_LDOUBLE:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_SCHAR == dst_type) {
hw = (unsigned char *)&hw_schar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_schar = (signed char)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_schar = (signed char)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_schar = (signed char)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_UCHAR == dst_type) {
hw = (unsigned char *)&hw_uchar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_uchar = (unsigned char)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_uchar = (unsigned char)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_uchar = (unsigned char)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_SHORT == dst_type) {
hw = (unsigned char *)&hw_short;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_short = (short)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_short = (short)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_short = (short)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_USHORT == dst_type) {
hw = (unsigned char *)&hw_ushort;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_ushort = (unsigned short)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_ushort = (unsigned short)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_ushort = (unsigned short)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_INT == dst_type) {
hw = (unsigned char *)&hw_int;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_int = (int)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_int = (int)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_int = (int)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_UINT == dst_type) {
hw = (unsigned char *)&hw_uint;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_uint = (unsigned int)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_uint = (unsigned int)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_uint = (unsigned int)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_LONG == dst_type) {
hw = (unsigned char *)&hw_long;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_long = (long)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_long = (long)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_long = (long)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_ULONG == dst_type) {
hw = (unsigned char *)&hw_ulong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_ulong = (unsigned long)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_ulong = (unsigned long)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_ulong = (unsigned long)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_LLONG == dst_type) {
hw = (unsigned char *)&hw_llong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_llong = (long long)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_llong = (long long)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_llong = (long long)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
else if (INT_ULLONG == dst_type) {
hw = (unsigned char *)&hw_ullong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
hw_ullong = (unsigned long long)(*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
hw_ullong = (unsigned long long)(*((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
hw_ullong = (unsigned long long)(*((long double *)aligned));
break;
case INT_SCHAR:
case INT_UCHAR:
case INT_SHORT:
case INT_USHORT:
case INT_INT:
case INT_UINT:
case INT_LONG:
case INT_ULONG:
case INT_LLONG:
case INT_ULLONG:
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
HDassert(dst_nbits % 8 == 0);
/* For Intel machines, the size of "long double" is 12 bytes, precision
* is 80 bits; for AMD processors, the size of "long double" is 16 bytes,
* precision is 80 bits. During hardware conversion, the last few unused
* bytes may have garbage in them. Clean them out with 0s before compare
* the values.
*/
if (dendian == H5T_ORDER_LE && dst_type == FLT_LDOUBLE) {
size_t q;
for (q = dst_nbits / 8; q < dst_size; q++)
buf[j * dst_size + q] = 0x00;
}
/* Are the two results the same? */
for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++)
if (buf[j * dst_size + k] != hw[k])
break;
if (k == dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type) && sendian == H5T_ORDER_VAX) {
for (k = 0; k < src_size; k += 2) {
src_bits[k] = saved[j * src_size + (src_size - 2) - k];
src_bits[k + 1] = saved[j * src_size + (src_size - 1) - k];
}
}
else {
for (k = 0; k < src_size; k++)
src_bits[src_size - (k + 1)] = saved[j * src_size + ENDIAN(src_size, k, sendian)];
}
for (k = 0; k < dst_size; k++)
dst_bits[dst_size - (k + 1)] = buf[j * dst_size + ENDIAN(dst_size, k, dendian)];
/* Test library's default overflow handling:
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*
* Test user's exception handler when overflows:
* Try to follow the except_func callback function to check if the
* desired value was set.
*/
if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type || FLT_LDOUBLE == src_type) &&
(INT_SCHAR == dst_type || INT_SHORT == dst_type || INT_INT == dst_type || INT_LONG == dst_type ||
INT_LLONG == dst_type)) {
if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) &&
overflows(src_bits, src, dst_nbits - 1)) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (!except_set) {
if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
else {
/* fill_value is small so we know only the 1st byte is set */
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
else if (1 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) &&
overflows(src_bits, src, dst_nbits - 1)) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (!except_set) {
if (1 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) &&
H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 1) < 0)
continue; /*no error*/
}
else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type || FLT_LDOUBLE == src_type) &&
(INT_UCHAR == dst_type || INT_USHORT == dst_type || INT_UINT == dst_type ||
INT_ULONG == dst_type || INT_ULLONG == dst_type)) {
if (H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (!except_set) {
if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 1) < 0)
continue; /*no error*/
}
else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
else if (overflows(src_bits, src, dst_nbits)) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (!except_set) {
if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0)
continue; /*no error*/
}
else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
/* Print errors */
if (0 == fails_this_test++) {
if (run_test == TEST_NORMAL) {
H5_FAILED();
}
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) {
H5_WARNING();
}
}
HDprintf(" elmt %u: \n", (unsigned)j);
HDprintf(" src = ");
for (k = 0; k < src_size; k++)
HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, sendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char));
HDprintf(" %29d\n", (int)*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char));
HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short));
HDprintf(" %29hd\n", *((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short));
HDprintf(" %29hu\n", *((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned));
HDprintf(" %29u\n", *((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long));
HDprintf(" %29ld\n", *((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long));
HDprintf(" %29lu\n", *((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long));
HDfprintf(stdout, " %29lld\n", *((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long));
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float));
HDprintf(" %29f\n", (double)*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double));
HDprintf(" %29f\n", *((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double));
HDprintf(" %29Lf\n", *((long double *)aligned));
break;
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
HDprintf(" dst = ");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, dendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf + j * sizeof(signed char), sizeof(signed char));
HDprintf(" %29d\n", (int)*((signed char *)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf + j * sizeof(unsigned char), sizeof(unsigned char));
HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf + j * sizeof(short), sizeof(short));
HDprintf(" %29hd\n", *((short *)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf + j * sizeof(unsigned short), sizeof(unsigned short));
HDprintf(" %29hu\n", *((unsigned short *)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf + j * sizeof(int), sizeof(int));
HDprintf(" %29d\n", *((int *)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf + j * sizeof(unsigned), sizeof(unsigned));
HDprintf(" %29u\n", *((unsigned *)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf + j * sizeof(long), sizeof(long));
HDprintf(" %29ld\n", *((long *)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf + j * sizeof(unsigned long), sizeof(unsigned long));
HDprintf(" %29lu\n", *((unsigned long *)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(long long));
HDfprintf(stdout, " %29lld\n", *((long long *)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf + j * sizeof(unsigned long long), sizeof(unsigned long long));
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, buf + j * sizeof(float), sizeof(float));
HDprintf(" %29f\n", (double)*((float *)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, buf + j * sizeof(double), sizeof(double));
HDprintf(" %29f\n", *((double *)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, buf + j * sizeof(long double), sizeof(long double));
HDprintf(" %29Lf\n", *((long double *)aligned));
break;
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
HDprintf(" and = ");
for (k = 0; k < dst_size; k++)
HDprintf(" %02x", hw[ENDIAN(dst_size, k, dendian)]);
HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDprintf(" %29d\n", (int)*((signed char *)((void *)hw)));
break;
case INT_UCHAR:
HDprintf(" %29u\n", (unsigned)*((unsigned char *)((void *)hw)));
break;
case INT_SHORT:
HDprintf(" %29hd\n", *((short *)((void *)hw)));
break;
case INT_USHORT:
HDprintf(" %29hu\n", *((unsigned short *)((void *)hw)));
break;
case INT_INT:
HDprintf(" %29d\n", *((int *)((void *)hw)));
break;
case INT_UINT:
HDprintf(" %29u\n", *((unsigned int *)((void *)hw)));
break;
case INT_LONG:
HDprintf(" %29ld\n", *((long *)((void *)hw)));
break;
case INT_ULONG:
HDprintf(" %29lu\n", *((unsigned long *)((void *)hw)));
break;
case INT_LLONG:
HDfprintf(stdout, " %29lld\n", *((long long *)((void *)hw)));
break;
case INT_ULLONG:
HDfprintf(stdout, " %29llu\n", *((unsigned long long *)((void *)hw)));
break;
case FLT_FLOAT:
HDprintf(" %29f\n", (double)*((float *)((void *)hw)));
break;
case FLT_DOUBLE:
HDprintf(" %29f\n", *((double *)((void *)hw)));
break;
case FLT_LDOUBLE:
HDprintf(" %29Lf\n", *((long double *)((void *)hw)));
break;
case OTHER:
default:
HDassert(0 && "Unknown type");
break;
}
/* If the source is normalized values, print out error message; if it is
* denormalized or special values, print out warning message.*/
if (++fails_all_tests >= max_fails) {
if (run_test == TEST_NORMAL)
HDputs(" maximum failures reached, aborting test...");
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
HDputs(" maximum warnings reached, aborting test...");
HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)");
goto done;
}
}
if (!fails_all_tests)
PASSED();
done:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
/* If the source is normalized floating values, treat the failures as error;
* if it is denormalized or special floating values, treat the failure as warning.*/
if (run_test == TEST_NORMAL)
return (int)fails_all_tests;
else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL)
return 0;
error:
if (buf)
aligned_free(buf);
if (saved)
aligned_free(saved);
if (aligned)
HDfree(aligned);
HDfflush(stdout);
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5(); /*print statistics*/
if (run_test == TEST_NORMAL)
return MAX((int)fails_all_tests, 1);
else {
HDassert(run_test == TEST_DENORM || run_test == TEST_SPECIAL);
return 1;
}
}
/*-------------------------------------------------------------------------
* Function: overflows
*
* Purpose: When convert from float or double to any integer type,
* check if overflow occurs.
*
*
* Return: TRUE: overflow happens
*
* FALSE: no overflow
*
* Programmer: Raymond Lu
* Monday, Nov 17, 2003
*
*-------------------------------------------------------------------------
*/
static hbool_t
overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits)
{
hbool_t ret_value = FALSE;
hsize_t expt;
size_t mant_digits = 0, expt_digits = 0, bias = 0;
size_t epos, mpos;
size_t src_prec = 0; /*source type precision in bits*/
H5T_norm_t norm;
ssize_t indx;
unsigned char bits[32], mant_bits[32];
HDmemset(bits, 0, (size_t)32);
HDmemset(mant_bits, 0, (size_t)32);
/*
* Sometimes, type size isn't equal to the precision like Linux's "long
* double", where size is 96 bits and precision is 80 bits.
*/
src_prec = H5Tget_precision(src_id);
H5Tget_fields(src_id, NULL, &epos, &expt_digits, &mpos, &mant_digits);
bias = H5Tget_ebias(src_id);
norm = H5Tget_norm(src_id);
HDmemcpy(bits, origin_bits, src_prec / 8 + 1);
/*Check for special cases: +Inf, -Inf*/
if (H5T__bit_find(bits, mpos, mant_digits, H5T_BIT_LSB, TRUE) < 0) {
if (H5T__bit_find(bits, epos, expt_digits, H5T_BIT_LSB, FALSE) < 0) {
ret_value = TRUE;
goto done;
}
}
else if (H5T_NORM_NONE == norm && H5T__bit_find(bits, mpos, mant_digits - 1, H5T_BIT_LSB, TRUE) < 0 &&
H5T__bit_find(bits, epos, expt_digits, H5T_BIT_LSB, FALSE) < 0) {
/*This is a special case for the source of no implied mantissa bit.
*If the exponent bits are all 1s and only the 1st bit of mantissa
*is set to 1. It's infinity. The Intel-Linux "long double" is this case.*/
ret_value = TRUE;
goto done;
}
/* get exponent */
expt = H5T__bit_get_d(bits, mant_digits, expt_digits) - bias;
if (expt >= (dst_num_bits - 1)) {
ret_value = TRUE;
goto done;
}
/* get significand */
H5T__bit_copy(mant_bits, (size_t)0, bits, (size_t)0, mant_digits);
/* restore implicit bit if normalization is implied*/
if (norm == H5T_NORM_IMPLIED) {
H5T__bit_inc(mant_bits, mant_digits, (size_t)1);
mant_digits++;
}
/* shift significand */
H5T__bit_shift(mant_bits, (ssize_t)(expt - expt_digits), (size_t)0, (size_t)(32 * 8));
indx = H5T__bit_find(mant_bits, (size_t)0, (size_t)(32 * 8), H5T_BIT_MSB, 1);
if ((size_t)indx >= dst_num_bits)
ret_value = TRUE;
done:
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: run_integer_tests
*
* Purpose: Runs all integer tests.
*
* Return: Number of errors
*
* Programmer: Robb Matzke
* Tuesday, November 24, 1998
*
*-------------------------------------------------------------------------
*/
static int
run_integer_tests(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_fp_tests
*
* Purpose: Runs all floating-point tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Tuesday, March 22, 2005
*
*-------------------------------------------------------------------------
*/
static int
run_fp_tests(const char *name)
{
int nerrors = 0;
if (!HDstrcmp(name, "noop")) {
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LDOUBLE);
goto done;
}
/*Test normalized values. TEST_NORMAL indicates normalized values.*/
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
/*Test denormalized values. TEST_DENORM indicates denormalized values.*/
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
#ifndef H5_DISABLE_SOME_LDOUBLE_CONV
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
#else
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, "long double",
"float");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu.");
}
#endif
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
/*Test special values, +/-0, +/-infinity, +/-QNaN, +/-SNaN.*/
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
#ifndef H5_DISABLE_SOME_LDOUBLE_CONV
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#else
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, "long double",
"float or double");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu.");
}
#endif
#endif
done:
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_int_fp_conv
*
* Purpose: Runs all integer-float tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
*-------------------------------------------------------------------------
*/
static int
run_int_fp_conv(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_DOUBLE);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_DOUBLE);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_DOUBLE);
#endif
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_LDOUBLE);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
#if !defined(H5_LONG_TO_LDOUBLE_SPECIAL) && !defined(H5_DISABLE_SOME_LDOUBLE_CONV)
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_LDOUBLE);
#else
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "(unsigned) long",
"long double");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to the special algorithm of hardware conversion.");
}
#endif
#endif /* H5_SIZEOF_LONG!=H5_SIZEOF_INT */
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
#if H5_LLONG_TO_LDOUBLE_CORRECT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_LDOUBLE);
#else /* H5_LLONG_TO_LDOUBLE_CORRECT */
{
char str[256]; /*hello string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long long", "long double");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler error in handling conversion.");
}
#endif /* H5_LLONG_TO_LDOUBLE_CORRECT */
#if H5_LLONG_TO_LDOUBLE_CORRECT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_LDOUBLE);
#else /* H5_LLONG_TO_LDOUBLE_CORRECT */
{
char str[256]; /*hello string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "unsigned long long",
"long double");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
}
#endif /* H5_LLONG_TO_LDOUBLE_CORRECT */
#endif
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_fp_int_conv
*
* Purpose: Runs all float-integer tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
*-------------------------------------------------------------------------
*/
static int
run_fp_int_conv(const char *name)
{
int nerrors = 0;
int test_values;
for (test_values = TEST_NORMAL; test_values <= TEST_SPECIAL; test_values++) {
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
if (!HDstrcmp(name, "hw")) { /* Hardware conversion */
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
}
else { /* Software conversion */
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
}
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE
if (test_values != TEST_SPECIAL) {
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT);
}
else {
#ifndef H5_DISABLE_SOME_LDOUBLE_CONV
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT);
#else
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, "long double",
"signed and unsigned char, short, int, long");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu.");
#endif
}
#if H5_SIZEOF_LONG != H5_SIZEOF_INT
#ifndef H5_LDOUBLE_TO_LONG_SPECIAL
if (test_values != TEST_SPECIAL && test_values != TEST_NORMAL) {
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG);
}
else {
#ifndef H5_DISABLE_SOME_LDOUBLE_CONV
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG);
#endif
}
#else
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double",
"(unsigned) long");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to the special algorithm of hardware conversion.");
}
#endif
#endif /*H5_SIZEOF_LONG!=H5_SIZEOF_INT */
#if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG
#ifdef H5_LDOUBLE_TO_LLONG_ACCURATE
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LLONG);
#else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double", "long long");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
#if defined(H5_LDOUBLE_TO_LLONG_ACCURATE)
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULLONG);
#else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
{
char str[256]; /*string */
HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double",
"unsigned long long");
HDprintf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
#endif
#endif
} /* end for */
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test the data type(integer and floating-point number).
*
* Return: Success:
*
* Failure:
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned long nerrors = 0;
/* Set the random # seed */
HDsrandom((unsigned)HDtime(NULL));
reset_hdf5();
if (ALIGNMENT)
HDprintf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT);
/* Do the tests */
/* Test H5Tcompiler_conv() for querying hard conversion. */
nerrors += (unsigned long)test_hard_query();
/* Test user-define, query functions and software conversion
* for user-defined floating-point types */
nerrors += (unsigned long)test_derived_flt();
/* Test user-define, query functions and software conversion
* for user-defined integer types */
nerrors += (unsigned long)test_derived_integer();
/* Test degenerate cases */
nerrors += (unsigned long)run_fp_tests("noop");
/* Test hardware floating-point conversion functions */
nerrors += (unsigned long)run_fp_tests("hard");
/* Test hardware integer conversion functions */
nerrors += (unsigned long)run_integer_tests("hard");
/* Test hardware integer-float conversion functions */
nerrors += (unsigned long)run_int_fp_conv("hard");
/* Test hardware float-integer conversion functions */
nerrors += (unsigned long)run_fp_int_conv("hard");
/* Test a few special values for hardware float-integer conversions */
nerrors += (unsigned long)test_particular_fp_integer();
/*----------------------------------------------------------------------
* Software tests
*----------------------------------------------------------------------
*/
without_hardware_g = TRUE;
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
/* Test software floating-point conversion functions */
nerrors += (unsigned long)run_fp_tests("soft");
/* Test software integer conversion functions */
nerrors += (unsigned long)test_conv_int_2();
nerrors += (unsigned long)run_integer_tests("soft");
/* Test software float-integer conversion functions */
nerrors += (unsigned long)run_fp_int_conv("soft");
/* Test software integer-float conversion functions */
nerrors += (unsigned long)run_int_fp_conv("soft");
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
reset_hdf5();
/* Restore the default error handler (set in h5_reset()) */
h5_restore_err();
if (nerrors) {
HDprintf("***** %lu FAILURE%s! *****\n", nerrors, 1 == nerrors ? "" : "S");
HDexit(EXIT_FAILURE);
}
HDprintf("All data type tests passed.\n");
return 0;
}