Cloned library HDF5-1.14.1 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

34194 lines
1.2 MiB

2 years ago
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Programmer: John Mainzer
* 6/9/04
*
* This file contains tests for the cache implemented in
* H5C.c
*/
#include "cache_common.h"
#include "H5MFprivate.h"
H5C_t *saved_cache = NULL; /* store the pointer to the instance of
* of H5C_t created by H5Fcreate()
* here between test cache setup and
* shutdown.
*/
haddr_t saved_actual_base_addr = HADDR_UNDEF; /* Store the address of the
* space allocated for cache items in the file between
* cache setup & takedown
*/
hid_t saved_fapl_id = H5P_DEFAULT; /* store the fapl id here between
* cache setup and takedown. Note
* that if saved_fapl_id == H5P_DEFAULT,
* we assume that there is no fapl to
* close.
*/
hid_t saved_fcpl_id = H5P_DEFAULT; /* store the fcpl id here between
* cache setup and takedown. Note
* that if saved_fcpl_id == H5P_DEFAULT,
* we assume that there is no fcpl to
* close.
*/
hid_t saved_fid = -1; /* store the file id here between cache setup
* and takedown.
*/
hbool_t write_permitted = TRUE;
hbool_t try_core_file_driver = FALSE;
hbool_t core_file_driver_failed = FALSE;
/* global variable declarations: */
const char *FILENAME[] = {"cache_test", NULL};
/* private typedef declarations: */
struct flush_cache_test_spec {
int entry_num;
int entry_type;
int entry_index;
hbool_t insert_flag;
unsigned int flags;
hbool_t expected_deserialized;
hbool_t expected_serialized;
hbool_t expected_destroyed;
};
struct pe_flush_cache_test_spec {
int entry_num;
int entry_type;
int entry_index;
hbool_t insert_flag;
unsigned int flags;
int num_pins;
int pin_type[MAX_PINS];
int pin_idx[MAX_PINS];
hbool_t expected_deserialized;
hbool_t expected_serialized;
hbool_t expected_destroyed;
};
struct fo_flush_entry_check {
int entry_num;
int entry_type;
int entry_index;
size_t expected_size;
hbool_t in_cache;
hbool_t at_main_addr;
hbool_t is_dirty;
hbool_t is_protected;
hbool_t is_pinned;
hbool_t expected_deserialized;
hbool_t expected_serialized;
hbool_t expected_destroyed;
};
struct fo_flush_cache_test_spec {
int entry_num;
int entry_type;
int entry_index;
hbool_t insert_flag;
unsigned int flags;
hbool_t resize_flag;
size_t new_size;
int num_pins;
int pin_type[MAX_PINS];
int pin_idx[MAX_PINS];
int num_flush_ops;
struct flush_op flush_ops[MAX_FLUSH_OPS];
hbool_t expected_deserialized;
hbool_t expected_serialized;
hbool_t expected_destroyed;
};
struct move_entry_test_spec {
int entry_type;
int entry_index;
hbool_t is_pinned;
hbool_t is_protected;
};
struct pinned_single_entry_test_spec {
int test_num;
int entry_type;
int entry_idx;
hbool_t dirty_flag;
hbool_t mark_dirty;
hbool_t pop_mark_dirty_prot;
hbool_t pop_mark_dirty_pinned;
hbool_t unprotect_unpin;
unsigned int flags;
unsigned int flush_flags;
hbool_t expected_serialized;
hbool_t expected_destroyed;
};
/* private function declarations: */
static unsigned smoke_check_1(int express_test, unsigned paged);
static unsigned smoke_check_2(int express_test, unsigned paged);
static unsigned smoke_check_3(int express_test, unsigned paged);
static unsigned smoke_check_4(int express_test, unsigned paged);
static unsigned smoke_check_5(int express_test, unsigned paged);
static unsigned smoke_check_6(int express_test, unsigned paged);
static unsigned smoke_check_7(int express_test, unsigned paged);
static unsigned smoke_check_8(int express_test, unsigned paged);
static unsigned smoke_check_9(int express_test, unsigned paged);
static unsigned smoke_check_10(int express_test, unsigned paged);
static unsigned write_permitted_check(int express_test, unsigned paged);
static unsigned check_insert_entry(unsigned paged);
static unsigned check_flush_cache(unsigned paged);
static void check_flush_cache__empty_cache(H5F_t *file_ptr);
static void check_flush_cache__multi_entry(H5F_t *file_ptr);
static void check_flush_cache__multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags,
unsigned int spec_size, struct flush_cache_test_spec spec[]);
static void check_flush_cache__pe_multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags,
unsigned int spec_size,
struct pe_flush_cache_test_spec spec[]);
static void check_flush_cache__single_entry(H5F_t *file_ptr);
static void check_flush_cache__single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx,
hbool_t insert_flag, unsigned int flags,
unsigned int flush_flags, hbool_t expected_deserialized,
hbool_t expected_serialized, hbool_t expected_destroyed);
static void check_flush_cache__pinned_single_entry_test(
H5F_t *file_ptr, int test_num, int entry_type, int entry_idx, hbool_t unprot_dirty_flag,
hbool_t mark_dirty, hbool_t pop_mark_dirty_prot, hbool_t pop_mark_dirty_pinned, hbool_t unprotect_unpin,
unsigned int flags, unsigned int flush_flags, hbool_t expected_serialized, hbool_t expected_destroyed);
static void check_flush_cache__flush_ops(H5F_t *file_ptr);
static void check_flush_cache__flush_op_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags,
int spec_size, const struct fo_flush_cache_test_spec spec[],
unsigned init_expected_index_len,
size_t init_expected_index_size, unsigned expected_index_len,
size_t expected_index_size, int check_size,
struct fo_flush_entry_check check[]);
static void check_flush_cache__flush_op_eviction_test(H5F_t *file_ptr);
static unsigned check_get_entry_status(unsigned paged);
static unsigned check_expunge_entry(unsigned paged);
static unsigned check_multiple_read_protect(unsigned paged);
static unsigned check_move_entry(unsigned paged);
static void check_move_entry__run_test(H5F_t *file_ptr, unsigned test_num,
struct move_entry_test_spec *spec_ptr);
static unsigned check_pin_protected_entry(unsigned paged);
static unsigned check_resize_entry(unsigned paged);
static unsigned check_evictions_enabled(unsigned paged);
static unsigned check_flush_protected_err(unsigned paged);
static unsigned check_destroy_pinned_err(unsigned paged);
static unsigned check_destroy_protected_err(unsigned paged);
static unsigned check_duplicate_insert_err(unsigned paged);
static unsigned check_double_pin_err(unsigned paged);
static unsigned check_double_unpin_err(unsigned paged);
static unsigned check_pin_entry_errs(unsigned paged);
static unsigned check_double_protect_err(unsigned paged);
static unsigned check_double_unprotect_err(unsigned paged);
static unsigned check_mark_entry_dirty_errs(unsigned paged);
static unsigned check_expunge_entry_errs(unsigned paged);
static unsigned check_move_entry_errs(unsigned paged);
static unsigned check_resize_entry_errs(unsigned paged);
static unsigned check_unprotect_ro_dirty_err(unsigned paged);
static unsigned check_protect_ro_rw_err(unsigned paged);
static unsigned check_protect_retries(unsigned paged);
static unsigned check_check_evictions_enabled_err(unsigned paged);
static unsigned check_auto_cache_resize(hbool_t cork_ageout, unsigned paged);
static unsigned check_auto_cache_resize_disable(unsigned paged);
static unsigned check_auto_cache_resize_epoch_markers(unsigned paged);
static unsigned check_auto_cache_resize_input_errs(unsigned paged);
static unsigned check_auto_cache_resize_aux_fcns(unsigned paged);
static unsigned check_metadata_blizzard_absence(hbool_t fill_via_insertion, unsigned paged);
static unsigned check_flush_deps(unsigned paged);
static unsigned check_flush_deps_err(unsigned paged);
static unsigned check_flush_deps_order(unsigned paged);
static unsigned check_notify_cb(unsigned paged);
static unsigned check_metadata_cork(hbool_t fill_via_insertion, unsigned paged);
static unsigned check_entry_deletions_during_scans(unsigned paged);
static void cedds__expunge_dirty_entry_in_flush_test(H5F_t *file_ptr);
static void cedds__H5C_make_space_in_cache(H5F_t *file_ptr);
static void cedds__H5C__autoadjust__ageout__evict_aged_out_entries(H5F_t *file_ptr);
static void cedds__H5C_flush_invalidate_cache__bucket_scan(H5F_t *file_ptr);
static unsigned check_stats(unsigned paged);
#if H5C_COLLECT_CACHE_STATS
static void check_stats__smoke_check_1(H5F_t *file_ptr);
#endif /* H5C_COLLECT_CACHE_STATS */
static H5F_t *setup_cache(size_t max_cache_size, size_t min_clean_size, unsigned paged);
static void takedown_cache(H5F_t *file_ptr, hbool_t dump_stats, hbool_t dump_detailed_stats);
/**************************************************************************/
/**************************************************************************/
/********************************* tests: *********************************/
/**************************************************************************/
/**************************************************************************/
/*-------------------------------------------------------------------------
* Function: smoke_check_1()
*
* Purpose: A basic functional test, inserts, destroys, and moves in
* the mix, along with repeated protects and unprotects.
* All entries are marked as clean.
*
* Return: void
*
* Programmer: John Mainzer
* 6/16/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_1(int express_test, unsigned paged)
{
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
int dirty_destroys = FALSE;
hbool_t display_stats = FALSE;
int32_t lag = 10;
int32_t max_index = (10 * 1024) - 1;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
if (paged)
TESTING("smoke check #1P -- all clean, ins, dest, ren, 4/2 MB cache");
else
TESTING("smoke check #1 -- all clean, ins, dest, ren, 4/2 MB cache");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged);
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_1() */
/*-------------------------------------------------------------------------
* Function: smoke_check_2()
*
* Purpose: A basic functional test, with inserts, destroys, and
* moves in the mix, along with some repeated protects
* and unprotects. About half the entries are marked as
* dirty.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_2(int express_test, unsigned paged)
{
hbool_t show_progress = FALSE;
int dirty_unprotects = TRUE;
int dirty_destroys = TRUE;
hbool_t display_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
if (paged)
TESTING("smoke check #2P -- ~1/2 dirty, ins, dest, ren, 4/2 MB cache");
else
TESTING("smoke check #2 -- ~1/2 dirty, ins, dest, ren, 4/2 MB cache");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged);
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_2() */
/*-------------------------------------------------------------------------
* Function: smoke_check_3()
*
* Purpose: A basic functional test on a tiny cache, with inserts,
* destroys, and moves in the mix, along with repeated
* protects and unprotects. All entries are marked as clean.
*
* Return: void
*
* Programmer: John Mainzer
* 6/16/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_3(int express_test, unsigned paged)
{
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
int dirty_destroys = FALSE;
hbool_t display_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
if (paged)
TESTING("smoke check #3P -- all clean, ins, dest, ren, 2/1 KB cache");
else
TESTING("smoke check #3 -- all clean, ins, dest, ren, 2/1 KB cache");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_3() */
/*-------------------------------------------------------------------------
* Function: smoke_check_4()
*
* Purpose: A basic functional test on a tiny cache, with inserts,
* destroys, and moves in the mix, along with repeated
* protects and unprotects. About half the entries are
* marked as dirty.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_4(int express_test, unsigned paged)
{
hbool_t show_progress = FALSE;
int dirty_unprotects = TRUE;
int dirty_destroys = TRUE;
hbool_t display_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
if (paged)
TESTING("smoke check #4P -- ~1/2 dirty, ins, dest, ren, 2/1 KB cache");
else
TESTING("smoke check #4 -- ~1/2 dirty, ins, dest, ren, 2/1 KB cache");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_4() */
/*-------------------------------------------------------------------------
* Function: smoke_check_5()
*
* Purpose: A basic functional test on a cache with automatic cache
* resizing enabled, with inserts in the mix, along with
* repeated protects and unprotects. All entries are marked
* as clean.
*
* Return: void
*
* Programmer: John Mainzer
* 10/14/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_5(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
hbool_t display_stats = FALSE;
int32_t max_index = 1024;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ NULL,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (2 * 1024 * 1024),
/* double min_clean_fraction = */ 0.1,
/* size_t max_size = */ (32 * 1024 * 1025),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 50000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.9,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.5};
if (paged)
TESTING("smoke check #5P -- all clean, ins, prot, unprot, AR cache 1");
else
TESTING("smoke check #5 -- all clean, ins, prot, unprot, AR cache 1");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_5() */
/*-------------------------------------------------------------------------
* Function: smoke_check_6()
*
* Purpose: A basic functional test on a cache with automatic cache
* resizing enabled, with inserts in the mix, along with
* repeated protects and unprotects. About one half of all
* entries are marked as dirty.
*
* Return: void
*
* Programmer: John Mainzer
* 10/25/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_6(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
hbool_t display_stats = FALSE;
int mile_stone = 1;
int32_t max_index = 1024;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ NULL,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (2 * 1024 * 1024),
/* double min_clean_fraction = */ 0.1,
/* size_t max_size = */ (32 * 1024 * 1025),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 50000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.9,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
if (paged)
TESTING("smoke check #6P -- ~1/2 dirty, ins, prot, unprot, AR cache 1");
else
TESTING("smoke check #6 -- ~1/2 dirty, ins, prot, unprot, AR cache 1");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
pass = TRUE;
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_6() */
/*-------------------------------------------------------------------------
* Function: smoke_check_7()
*
* Purpose: A basic functional test on a cache with automatic cache
* resizing enabled, with inserts in the mix, along with
* repeated protects and unprotects. All entries are marked
* as clean.
*
* Return: void
*
* Programmer: John Mainzer
* 12/2/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_7(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
hbool_t display_stats = FALSE;
int mile_stone = 1;
int32_t max_index = 1024;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ NULL,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (2 * 1024 * 1024),
/* double min_clean_fraction = */ 0.1,
/* size_t max_size = */ (32 * 1024 * 1025),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 100000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (8 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */
H5C_decr__age_out_with_threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.9,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.1};
if (paged)
TESTING("smoke check #7P -- all clean, ins, prot, unprot, AR cache 2");
else
TESTING("smoke check #7 -- all clean, ins, prot, unprot, AR cache 2");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_7() */
/*-------------------------------------------------------------------------
* Function: smoke_check_8()
*
* Purpose: A basic functional test on a cache with automatic cache
* resizing enabled, with inserts in the mix, along with
* repeated protects and unprotects. About one half of all
* entries are marked as dirty.
*
* Return: void
*
* Programmer: John Mainzer
* 10/25/04
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_8(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
hbool_t display_stats = FALSE;
int mile_stone = 1;
int32_t max_index = 1024;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ NULL,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (2 * 1024 * 1024),
/* double min_clean_fraction = */ 0.1,
/* size_t max_size = */ (32 * 1024 * 1025),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 100000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */
H5C_decr__age_out_with_threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.9,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.1};
if (paged)
TESTING("smoke check #8P -- ~1/2 dirty, ins, prot, unprot, AR cache 2");
else
TESTING("smoke check #8 -- ~1/2 dirty, ins, prot, unprot, AR cache 2");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ FALSE);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
hl_col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ FALSE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_8() */
/*-------------------------------------------------------------------------
* Function: smoke_check_9()
*
* Purpose: A repeat of smoke check 1, only with the cache corked
* part of the time.
*
* Recall that smoke check 1 is a basic functional test,
* with inserts, destroys, and moves in the mix, along
* with repeated protects and unprotects. All entries are
* marked as clean.
*
* Return: void
*
* Programmer: John Mainzer
* 8/1/07
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_9(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = FALSE;
int dirty_destroys = FALSE;
hbool_t display_stats = FALSE;
hbool_t display_detailed_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
if (paged)
TESTING("smoke check #9P -- all clean, ins, dest, ren, 4/2 MB, corked");
else
TESTING("smoke check #9 -- all clean, ins, dest, ren, 4/2 MB, corked");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
/* disable evictions */
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 1.\n";
}
}
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
/* enable evictions */
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 1.\n";
}
}
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled \n", __func__, mile_stone++,
(int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 2.\n";
}
}
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled \n", __func__, mile_stone++,
(int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 2.\n";
}
}
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled \n", __func__, mile_stone++,
(int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 3.\n";
}
}
if (show_progress) /* 12 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 13 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 14 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 3.\n";
}
}
if (show_progress) /* 15 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", __func__, mile_stone++,
(int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 16 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 4.\n";
}
}
if (show_progress) /* 17 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 18 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_9() */
/*-------------------------------------------------------------------------
* Function: smoke_check_10()
*
* Purpose: A repeat of smoke check 2, only with the cache corked
* part of the time.
*
* Recall that smoke check 2 is a basic functional test,
* with inserts, destroys, and moves in the mix, along
* with some repeated protects and unprotects. About half
* the entries are marked as dirty.
*
* Return: void
*
* Programmer: John Mainzer
* 8/1/07
*
*-------------------------------------------------------------------------
*/
static unsigned
smoke_check_10(int express_test, unsigned paged)
{
herr_t result;
hbool_t show_progress = FALSE;
int dirty_unprotects = TRUE;
int dirty_destroys = TRUE;
hbool_t display_stats = FALSE;
hbool_t display_detailed_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
if (paged)
TESTING("smoke check #10P -- ~1/2 dirty, ins, dest, ren, 4/2 MB, corked");
else
TESTING("smoke check #10 -- ~1/2 dirty, ins, dest, ren, 4/2 MB, corked");
if (paged && (express_test > 0)) {
SKIPPED();
return (0);
}
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", __func__, mile_stone++,
(int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 1.\n";
}
}
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 1.\n";
}
}
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", __func__, mile_stone++,
(int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ dirty_destroys,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 2.\n";
}
}
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 2.\n";
}
}
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", __func__, mile_stone++,
(int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 12 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 3.\n";
}
}
if (show_progress) /* 13 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
/* flush all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ FALSE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 14 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't enable evictions 3.\n";
}
}
if (show_progress) /* 15 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", __func__, mile_stone++,
(int)pass);
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ display_detailed_stats,
/* do_inserts */ TRUE,
/* dirty_unprotects */ dirty_unprotects);
if (show_progress) /* 16 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result < 0) {
pass = FALSE;
failure_mssg = "can't disable evictions 4.\n";
}
}
if (show_progress) /* 17 */
HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", __func__, mile_stone++,
(int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 18 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* smoke_check_10() */
/*-------------------------------------------------------------------------
* Function: write_permitted_check()
*
* Purpose: A basic test of the write permitted function. In essence,
* we load the cache up with dirty entryies, set
* write_permitted to FALSE, and then protect a bunch of
* entries. If there are any writes while write_permitted is
* FALSE, the test will fail.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
write_permitted_check(int
#if !H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
H5_ATTR_UNUSED
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
express_test,
unsigned paged)
{
#if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
hbool_t show_progress = FALSE;
hbool_t display_stats = FALSE;
int32_t max_index = (10 * 1024) - 1;
int32_t lag = 10;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
if (paged)
TESTING("write permitted check -- 1/0 MB cache (paged aggregation)");
else
TESTING("write permitted check -- 1/0 MB cache");
#if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
switch (express_test) {
case 0:
max_index = (10 * 1024) - 1;
break;
case 1:
max_index = (1 * 1024) - 1;
break;
case 2:
max_index = (512) - 1;
break;
default:
SKIPPED();
HDfprintf(stdout, " Long tests disabled.\n");
return 0; /* <========== note return */
break;
}
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
reset_entries();
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
file_ptr = setup_cache((size_t)(1 * 1024 * 1024), (size_t)0, paged);
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ TRUE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ TRUE,
/* dirty_unprotects */ TRUE);
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
write_permitted = FALSE;
row_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ FALSE,
/* do_moves */ TRUE,
/* move_to_main_addr */ TRUE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ FALSE,
/* dirty_unprotects */ NO_CHANGE);
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
write_permitted = TRUE;
row_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* do_moves */ TRUE,
/* move_to_main_addr */ FALSE,
/* do_destroys */ FALSE,
/* do_mult_ro_protects */ TRUE,
/* dirty_destroys */ TRUE,
/* dirty_unprotects */ TRUE);
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* flush and destroy all entries in the cache: */
flush_cache(/* file_ptr */ file_ptr,
/* destroy_entries */ TRUE,
/* dump_stats */ FALSE,
/* dump_detailed_stats */ FALSE);
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
col_major_scan_forward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ TRUE,
/* dirty_unprotects */ TRUE);
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
write_permitted = FALSE;
col_major_scan_backward(/* file_ptr */ file_ptr,
/* max_index */ max_index,
/* lag */ lag,
/* verbose */ FALSE,
/* reset_stats */ TRUE,
/* display_stats */ display_stats,
/* display_detailed_stats */ TRUE,
/* do_inserts */ FALSE,
/* dirty_unprotects */ NO_CHANGE);
write_permitted = TRUE;
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
takedown_cache(file_ptr, display_stats, TRUE);
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
verify_clean();
verify_unprotected();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
#else /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
SKIPPED();
HDfprintf(stdout, " Clean and dirty LRU lists disabled.\n");
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
return (unsigned)!pass;
} /* write_permitted_check() */
/*-------------------------------------------------------------------------
* Function: check_insert_entry()
*
* Purpose: Verify that H5C_insert_entry behaves as expected.
* Test the behaviour with different flags.
*
* This test was added primarily to test basic insert
* pinned entry functionality, but I through in explicit
* tests for other functionality that is tested implicitly
* elsewhere.
*
* Return: void
*
* Programmer: John Mainzer
* 8/10/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_insert_entry(unsigned paged)
{
int entry_type = PICO_ENTRY_TYPE;
int i;
herr_t result;
hbool_t in_cache;
hbool_t is_dirty;
hbool_t is_protected;
hbool_t is_pinned;
size_t entry_size;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
struct H5C_cache_entry_t *search_ptr;
if (paged)
TESTING("H5C_insert_entry() functionality (paged aggregation)");
else
TESTING("H5C_insert_entry() functionality");
pass = TRUE;
/* Allocate a cache, and insert entries into it using all
* combinations of flags. Verify that the entries are inserted,
* and that the flags have the desired effects.
*
* Note that the dirty parameter in insert_entry is no longer
* used, as we have decided that all inserted entries are
* dirty by definition. (Which sounds very reasonable, but didn't
* used to be the case.)
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
insert_entry(file_ptr, entry_type, 0, H5C__NO_FLAGS_SET);
insert_entry(file_ptr, entry_type, 1, H5C__SET_FLUSH_MARKER_FLAG);
insert_entry(file_ptr, entry_type, 2, H5C__PIN_ENTRY_FLAG);
insert_entry(file_ptr, entry_type, 3, (H5C__SET_FLUSH_MARKER_FLAG | H5C__PIN_ENTRY_FLAG));
}
/* Verify that the entries are inserted as desired. */
i = 0;
base_addr = entries[0];
while (pass && (i < 4)) {
entry_ptr = &(base_addr[i]);
/* Start by checking everything we can via H5C_get_entry_status() */
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
failure_mssg = "H5C_get_entry_status() reports failure.";
}
if (pass) {
/* check the universals */
if ((!in_cache) || (!is_dirty) || (is_protected) || (entry_size != entry_sizes[entry_type])) {
pass = FALSE;
failure_mssg = "Unexpected insert results 1.";
}
}
if (pass) {
/* verify that the pinned flag got set correctly */
if ((i == 2) || (i == 3)) {
if (!is_pinned) {
pass = FALSE;
failure_mssg = "Unexpected insert results 2.";
}
}
else if (is_pinned) {
pass = FALSE;
failure_mssg = "Unexpected insert results 3.";
}
else if (is_pinned != ((entry_ptr->header).is_pinned)) {
pass = FALSE;
failure_mssg = "Unexpected insert results 4.";
}
}
/* That's all we can get from H5C_get_entry_status().
* Now start looking at the cache data structures directly.
*/
if (pass) {
/* Verify that the flush marker got set correctly */
if ((i == 1) || (i == 3)) {
if (!((entry_ptr->header).flush_marker)) {
pass = FALSE;
failure_mssg = "Unexpected insert results 5.";
}
}
else if ((entry_ptr->header).flush_marker) {
pass = FALSE;
failure_mssg = "Unexpected insert results 6.";
}
}
if (pass) {
/* Verify that pinned entries are in the pinned entry list */
if ((entry_ptr->header).is_pinned) {
search_ptr = cache_ptr->pel_head_ptr;
while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) {
search_ptr = search_ptr->next;
}
if (search_ptr == NULL) {
pass = FALSE;
failure_mssg = "Unexpected insert results 7.";
}
}
}
if (pass) {
/* Verify that unpinned entries are in the LRU list */
if (!((entry_ptr->header).is_pinned)) {
search_ptr = cache_ptr->LRU_head_ptr;
while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) {
search_ptr = search_ptr->next;
}
if (search_ptr == NULL) {
pass = FALSE;
failure_mssg = "Unexpected insert results 8.";
}
}
}
#if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
if (pass) {
/* Verify that unpinned entries are in the dirty LRU list */
if (!((entry_ptr->header).is_pinned)) {
search_ptr = cache_ptr->dLRU_head_ptr;
while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) {
search_ptr = search_ptr->aux_next;
}
if (search_ptr == NULL) {
pass = FALSE;
failure_mssg = "Unexpected insert results 9.";
}
}
}
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
i++;
} /* while */
/* So much for looking at the individual entries. Now verify
* that the various counts and sized in the cache header are
* as expected.
*/
if (pass) {
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * entry_sizes[entry_type]) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 4) || (cache_ptr->slist_size != 4 * entry_sizes[entry_type]))) ||
(cache_ptr->pl_len != 0) || (cache_ptr->pl_size != (size_t)0) || (cache_ptr->pel_len != 2) ||
(cache_ptr->pel_size != 2 * entry_sizes[entry_type]) || (cache_ptr->LRU_list_len != 2) ||
(cache_ptr->LRU_list_size != 2 * entry_sizes[entry_type])
#if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
|| (cache_ptr->dLRU_list_len != 2) ||
(cache_ptr->dLRU_list_size != 2 * entry_sizes[entry_type]) || (cache_ptr->cLRU_list_len != 0) ||
(cache_ptr->cLRU_list_size != (size_t)0)
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */
) {
pass = FALSE;
failure_mssg = "Unexpected insert results 10.";
}
}
/* Finally, if stats collection is enabled, verify that the expected
* stats are collected.
*/
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if ((cache_ptr->insertions[entry_type] != 4) || (cache_ptr->pinned_insertions[entry_type] != 2) ||
(cache_ptr->pins[entry_type] != 2) || (cache_ptr->unpins[entry_type] != 0) ||
(cache_ptr->dirty_pins[entry_type] != 0) || (cache_ptr->max_index_len != 4) ||
(cache_ptr->max_index_size != 4 * entry_sizes[entry_type]) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 4) || (cache_ptr->slist_size != 4 * entry_sizes[entry_type]))) ||
(cache_ptr->max_pl_len != 0) || (cache_ptr->max_pl_size != (size_t)0) ||
(cache_ptr->max_pel_len != 2) || (cache_ptr->max_pel_size != 2 * entry_sizes[entry_type])) {
pass = FALSE;
failure_mssg = "Unexpected insert results 11.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
/* Unpin the pinned entries so we can take down the cache cleanly. */
if (pass) {
unpin_entry(entry_type, 2);
unpin_entry(entry_type, 3);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_insert_entry() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache()
*
* Purpose: Verify that flush_cache behaves as expected. In particular,
* test the behaviour with different flags.
*
* Return: void
*
* Programmer: John Mainzer
* 1/10/05
*
*-------------------------------------------------------------------------
*/
static unsigned
check_flush_cache(unsigned paged)
{
H5F_t *file_ptr = NULL;
if (paged)
TESTING("H5C_flush_cache() functionality (paged aggregation)");
else
TESTING("H5C_flush_cache() functionality");
pass = TRUE;
/* allocate a cache, and flush it under various circumstances.
* To the extent possible, verify that the desired actions took
* place.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
}
/* first test behaviour on an empty cache. Can't do much sanity
* checking in this case, so simply check the return values.
*/
if (pass) {
check_flush_cache__empty_cache(file_ptr);
}
/* now do a series of similar tests with a cache with a single entry.
* Start with a clean entry, with no flags set.
*/
if (pass) {
check_flush_cache__single_entry(file_ptr);
}
if (pass) {
check_flush_cache__multi_entry(file_ptr);
}
if (pass) {
check_flush_cache__flush_ops(file_ptr);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_flush_cache() */
/*-------------------------------------------------------------------------
*
* Function: check_flush_cache__empty_cache()
*
* Purpose : Verify that flush_cache behaves as expected with an empty
* cache.
*
* Return: void
*
* Programmer: John Mainzer
* 1/12/05
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__empty_cache(H5F_t *file_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to empty cache case.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at beginning of empty cache case.";
}
/* Test behaviour on an empty cache. Can't do much sanity
* checking in this case, so simply check the return values.
*
* Check of return values is done in the H5C_FLUSH_CACHE() macro.
*/
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "flush with flags = 0x00 failed on empty cache.\n")
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"flush with flags = 0x04 failed on empty cache.\n")
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_CLEAR_ONLY_FLAG,
"flush with flags = 0x08 failed on empty cache.\n")
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_MARKED_ENTRIES_FLAG,
"flush with flags = 0x10 failed on empty cache.\n")
}
} /* check_flush_cache__empty_cache() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__multi_entry()
*
* Purpose: Verify that flush_cache behaves as expected when the cache
* contains multiple elements.
*
* Return: void
*
* Programmer: John Mainzer
* 1/14/05
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__multi_entry(H5F_t *file_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to multi entry case.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at beginning of multi entry case.";
}
if (pass) {
int test_num = 1;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 2;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 3;
unsigned int flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 4;
unsigned int flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 5;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 6;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 7;
unsigned int flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 8;
unsigned int flush_flags =
H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
/* verify that all other flags are ignored */
if (pass) {
int test_num = 9;
unsigned int flush_flags = (unsigned)~(H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG);
unsigned int spec_size = 8;
struct flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
/* Now do pinned entry tests:
*
* For the most part, this test is directed at testing the ability
* of the flush routine to unravel collections of pinned entries.
*/
if (pass) {
int test_num = 1;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
unsigned int spec_size = 8;
struct pe_flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 2,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 3,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 4,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 5,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1,
-1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 6,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE,
MONSTER_ENTRY_TYPE, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, 20, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 7,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE,
MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, 20, 30, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE}};
check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 2;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
unsigned int spec_size = 8;
struct pe_flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 2,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 3,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {MONSTER_ENTRY_TYPE, -1, -1, -1, -1 - 1, -1, -1},
/* pin_idx[MAX_PINS] = */ {10, -1, -1, -1 - 1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 2,
/* pin_type[MAX_PINS] = */ {MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {10, 20, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 3,
/* pin_type[MAX_PINS] = */
{MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {10, 20, 30, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 3;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG;
unsigned int spec_size = 8;
struct pe_flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 4;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct pe_flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 4,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 4,
/* pin_type[MAX_PINS] = */
{PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
if (pass) {
int test_num = 5;
unsigned int flush_flags =
H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG;
unsigned int spec_size = 8;
struct pe_flush_cache_test_spec spec[8] = {
{/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 0,
/* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 75,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 25,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 4,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 5,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 6,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 30,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE},
{/* entry_num = */ 7,
/* entry_type = */ MONSTER_ENTRY_TYPE,
/* entry_index = */ 40,
/* insert_flag = */ TRUE,
/* flags = */ H5C__SET_FLUSH_MARKER_FLAG,
/* num_pins = */ 1,
/* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1},
/* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE}};
check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec);
}
} /* check_flush_cache__multi_entry() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__multi_entry_test()
*
* Purpose : Run a multi entry flush cache test.
*
* Return: void
*
* Programmer: John Mainzer
* 1/13/05
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags,
unsigned int spec_size, struct flush_cache_test_spec spec[])
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
unsigned u;
size_t total_entry_size = 0;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache not empty at beginning of multi entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((spec_size < 1) || (spec == NULL)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to multi entry test #%d.", test_num);
failure_mssg = msg;
}
u = 0;
while (pass && (u < spec_size)) {
if (((unsigned)spec[u].entry_num != u) || (spec[u].entry_type < 0) ||
(spec[u].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[u].entry_index < 0) ||
(spec[u].entry_index > max_indices[spec[u].entry_type])) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "bad data in spec[%u] on entry to multi entry test #%d.", u,
test_num);
failure_mssg = msg;
}
u++;
}
u = 0;
while (pass && (u < spec_size)) {
if (spec[u].insert_flag) {
insert_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags);
}
else {
protect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index);
unprotect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags);
}
total_entry_size += entry_sizes[spec[u].entry_type];
u++;
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message.\n")
if (!pass) {
HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in multi entry test #%d.", flush_flags,
test_num);
failure_mssg = msg;
}
}
u = 0;
while (pass && (u < spec_size)) {
base_addr = entries[spec[u].entry_type];
entry_ptr = &(base_addr[spec[u].entry_index]);
if ((entry_ptr->deserialized != spec[u].expected_deserialized) ||
(entry_ptr->serialized != spec[u].expected_serialized) ||
(entry_ptr->destroyed != spec[u].expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Bad status on entry %u after flush in multi entry test #%d.", u,
test_num);
failure_mssg = msg;
}
u++;
}
if (pass) {
if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) &&
((cache_ptr->index_len != spec_size) || (cache_ptr->index_size != total_entry_size))) ||
(((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) &&
((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in multi entry test #%d.",
test_num);
failure_mssg = msg;
}
}
/* clean up the cache to prep for the next test */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.\n")
if (!pass) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in multi entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in multi entry test #%d.",
test_num);
failure_mssg = msg;
}
}
u = 0;
while (pass && (u < spec_size)) {
base_addr = entries[spec[u].entry_type];
entry_ptr = &(base_addr[spec[u].entry_index]);
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
u++;
}
} /* check_flush_cache__multi_entry_test() */
/*-------------------------------------------------------------------------
*
* Function: check_flush_cache__pe_multi_entry_test()
*
* Purpose: Run a multi entry flush cache test.
*
* Return: void
*
* Programmer: John Mainzer
* 4/5/06
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__pe_multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags,
unsigned int spec_size, struct pe_flush_cache_test_spec spec[])
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
unsigned u;
int j;
size_t total_entry_size = 0;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to pe multi entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache not empty at beginning of pe multi entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((spec_size < 1) || (spec == NULL)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to pe multi entry test #%d.", test_num);
failure_mssg = msg;
}
u = 0;
while (pass && (u < spec_size)) {
if (((unsigned)spec[u].entry_num != u) || (spec[u].entry_type < 0) ||
(spec[u].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[u].entry_index < 0) ||
(spec[u].entry_index > max_indices[spec[u].entry_type]) || (spec[u].num_pins < 0) ||
(spec[u].num_pins > MAX_PINS)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "bad data in spec[%u] on entry to pe multi entry test #%d.", u,
test_num);
failure_mssg = msg;
}
u++;
}
u = 0;
while (pass && (u < spec_size)) {
if (spec[u].insert_flag) {
insert_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags);
}
else {
protect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index);
unprotect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags);
}
total_entry_size += entry_sizes[spec[u].entry_type];
for (j = 0; j < spec[u].num_pins; j++) {
create_pinned_entry_dependency(file_ptr, spec[u].entry_type, spec[u].entry_index,
spec[u].pin_type[j], spec[u].pin_idx[j]);
}
u++;
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message.\n")
if (!pass) {
HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in pe multi entry test #%d.",
flush_flags, test_num);
failure_mssg = msg;
}
}
u = 0;
while (pass && (u < spec_size)) {
base_addr = entries[spec[u].entry_type];
entry_ptr = &(base_addr[spec[u].entry_index]);
if ((entry_ptr->deserialized != spec[u].expected_deserialized) ||
(entry_ptr->serialized != spec[u].expected_serialized) ||
(entry_ptr->destroyed != spec[u].expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Bad status on entry %u after flush in pe multi entry test #%d.", u,
test_num);
failure_mssg = msg;
}
u++;
}
if (pass) {
if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) &&
((cache_ptr->index_len != spec_size) || (cache_ptr->index_size != total_entry_size))) ||
(((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) &&
((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in pe multi entry test #%d.",
test_num);
failure_mssg = msg;
}
}
/* clean up the cache to prep for the next test */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.\n")
if (!pass) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in pe multi entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected cache len/size after cleanup in pe multi entry test #%d.", test_num);
failure_mssg = msg;
}
}
u = 0;
while (pass && (u < spec_size)) {
base_addr = entries[spec[u].entry_type];
entry_ptr = &(base_addr[spec[u].entry_index]);
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
u++;
}
} /* check_flush_cache__pe_multi_entry_test() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__flush_ops()
*
* Purpose: Run the flush ops cache tests.
*
* These are tests that test the cache's ability to handle
* the case in which the flush callback dirties, resizes,
* and/or moves entries.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 9/3/06
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__flush_ops(H5F_t *file_ptr)
{
const int max_num_spec = 10;
const int max_num_check = 4;
struct fo_flush_cache_test_spec *spec = NULL;
struct fo_flush_entry_check *checks = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to flush ops test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at beginning of flush ops test.";
}
spec = HDmalloc((size_t)max_num_spec * sizeof(struct fo_flush_cache_test_spec));
if (spec == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate flush ops test spec array";
}
checks = HDmalloc((size_t)max_num_check * sizeof(struct fo_flush_entry_check));
if (checks == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate flush ops test check array";
}
if (pass) /* test #1 */
{
/* start with a very simple test, in which there are two entries
* resident in cache, and the second entry dirties the first in
* the flush callback. No size changes, and no flush flags.
*/
int test_num = 1;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 2;
int check_size = 0;
unsigned init_expected_index_len = 2;
size_t init_expected_index_size = 2 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 2;
size_t expected_index_size = 2 * PICO_ENTRY_SIZE;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ 0,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #2 */
{
/* Same as test 1, only this time set the flush invalidate flag.
* Note that we must repeat all tests with the flush invalidate flag
* as this triggers a different set of code to execute the flush.
*
* Create two entries resident in cache, and have the second entry
* dirty the first in the flush callback.
*/
int test_num = 2;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 2;
int check_size = 0;
unsigned init_expected_index_len = 2;
size_t init_expected_index_size = 2 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = 0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr*/
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #3 */
{
/* Single entry test verifying that the cache can handle the case in
* which the call back function resizes the entry for which it has
* been called.
*/
int test_num = 3;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 4;
unsigned expected_index_len = 1;
size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr:*/
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #4 */
{
/* Repeat test #4 with the flush invalidate flag.
*
* Single entry test verifying that the cache can handle the case in
* which the call back function resizes the entry for which it has
* been called.
*/
int test_num = 4;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 4;
unsigned expected_index_len = 0;
size_t expected_index_size = 0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #5 & #6 */
{
/* Single entry test verifying that the cache can handle the case in
* which the call back function first resizes and then moves the
* entry for which it has been called.
*
* Run this entry twice, as the first run moves the entry to its
* alternate address, and the second moves it back.
*
* 10/8/07 -- JRM
* Added a resize operation to this test to satisfy the new
* requirement that any resize of an entry on flush will always
* be accompanied by a resize. Note that as a result, this
* test becomes redundant with later tests.
*/
int test_num = 5; /* and 6 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 1;
size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the move to move the target entry back to its
* main address. The first test moved it to its alternate address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entry is moved forward in the slist. In the second
* it is moved backwards.
*
* Since there is only one entry in the cache, this doesn't really
* matter in this case. But we will do similar tests later with
* other entries in the cache.
*/
if (pass) {
spec[0].flush_ops[1].flag = TRUE;
test_num = 6;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #7 & #8 */
{
/* Run tests 5 & 6 again, using the flush invalidate flag on the
* second test.
*
* Single entry test verifying that the cache can handle the case in
* which the call back function moves the entry for which it has
* been called.
*
* Run this entry twice, as the first run moves the entry to its
* alternate address, and the second moves it back.
*
* 10/8/07 -- JRM
* Added a resize operation to this test to satisfy the new
* requirement that any resize of an entry on flush will always
* be accompanied by a resize. Note that as a result, this
* test becomes redundant with later tests.
*/
int test_num = 7; /* and 8 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 1;
size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the move to move the target entry back to its
* main address. The first test moved it to its alternate address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entry is moved forward in the slist. In the second
* it is moved backwards.
*
* Since there is only one entry in the cache, this doesn't really
* matter in this case. But we will do similar tests later with
* other entries in the cache.
*/
if (pass) {
test_num = 8;
flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
expected_index_len = 0;
expected_index_size = 0;
spec[0].flush_ops[1].flag = TRUE;
spec[0].expected_destroyed = TRUE;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #9 & #10 */
{
/* Single entry test verifying that the cache can handle the case in
* which the call back function both resizes and moves the entry
* for which it has been called.
*
* Again, we run this entry twice, as the first run moves the entry
* to its alternate address, and the second moves it back.
*/
int test_num = 9; /* and 10 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 2;
unsigned expected_index_len = 1;
size_t expected_index_size = VARIABLE_ENTRY_SIZE / 4;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 2,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the move to move the target entry back to its
* main address. The first test moved it to its alternate address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entry is moved forward in the slist. In the second
* it is moved backwards.
*
* Since there is only one entry in the cache, this doesn't really
* matter in this case. But we will do similar tests later with
* other entries in the cache.
*/
if (pass) {
spec[0].flush_ops[1].flag = TRUE;
test_num = 10;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #11 & #12 */
{
/* Repeat the previous test with the flush invalidate flag on the
* second test.
*
* Single entry test verifying that the cache can handle the case in
* which the call back function both resizes and moves the entry
* for which it has been called.
*
* Again, we run this entry twice, as the first run moves the entry to its
* alternate address, and the second moves it back.
*/
int test_num = 11; /* and 12 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 0;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 2;
unsigned expected_index_len = 1;
size_t expected_index_size = VARIABLE_ENTRY_SIZE / 4;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 2,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the move to move the target entry back to its
* main address. The first test moved it to its alternate address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entry is moved forward in the slist. In the second
* it is moved backwards.
*
* Since there is only one entry in the cache, this doesn't really
* matter in this case. But we will do similar tests later with
* other entries in the cache.
*/
if (pass) {
test_num = 12;
flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
expected_index_len = 0;
expected_index_size = 0;
spec[0].flush_ops[1].flag = TRUE;
spec[0].expected_destroyed = TRUE;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #13 */
{
/* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* dirties two entries that are not in cache. No size
* changes.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 13;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 3;
size_t expected_index_size = 3 * PICO_ENTRY_SIZE;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, 0, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ PICO_ENTRY_SIZE,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ PICO_ENTRY_SIZE,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #14 */
{
/* Repeat previous test with the flush invalidate flag.
*
* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* dirties two entries that are not in cache. No size
* changes.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 14;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = (size_t)0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 2,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, 0, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ PICO_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ PICO_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #15 */
{
/* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* resizes and dirties two entries that are not in cache.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 15;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 3;
size_t expected_index_size =
VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2);
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #16 */
{
/* Repeat previous test with the flush invalidate flag.
*
* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* resizes and dirties two entries that are not in cache.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 16;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = (size_t)0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #17 & #18 */
{
/* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* resizes, dirties, and moves two entries that are not in cache.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 17; /* and 18 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 3;
size_t expected_index_size =
VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2);
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the moves to move the target entries back to
* their main address. The first test moved them to their alternate
* address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entries are moved forward in the slist. In the second
* they are moved backwards.
*/
if (pass) {
test_num = 18;
spec[0].flush_ops[2].flag = TRUE;
spec[0].flush_ops[5].flag = TRUE;
checks[0].at_main_addr = TRUE;
checks[1].at_main_addr = TRUE;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #19 & #20 */
{
/* Repeat the above test with the flush invalidate flag on the
* second test.
*
* Test the ability of the cache to handle the case in which
* the flush function of an entry that is resident in cache
* resizes, dirties, and moves two entries that are not in cache.
*
* At present, I am assured that this case will never occur, but
* lets make sure we can handle it regardless.
*/
int test_num = 19; /* and 20 */
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 1;
int check_size = 2;
unsigned init_expected_index_len = 1;
size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 3;
size_t expected_index_size =
VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2);
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
/* this change forces the moves to move the target entries back to
* their main address. The first test moved them to their alternate
* address.
*
* Note that these two tests are not the same, as in the first test,
* the moved entries are moved forward in the slist. In the second
* they are moved backwards.
*/
if (pass) {
test_num = 20;
flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
expected_index_len = 0;
expected_index_size = (size_t)0;
spec[0].expected_destroyed = TRUE;
spec[0].flush_ops[2].flag = TRUE;
spec[0].flush_ops[5].flag = TRUE;
checks[0].at_main_addr = TRUE;
checks[0].in_cache = FALSE;
checks[0].expected_destroyed = TRUE;
checks[1].at_main_addr = TRUE;
checks[1].in_cache = FALSE;
checks[1].expected_destroyed = TRUE;
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
}
if (pass) /* test #21 */
{
/* Now mix things up a bit.
*
* Load several entries, two of which have flush functions that
* resize, dirty, and move two entries that are not in the
* cache. Mark only one of these entries, and then flush the
* cache with the flush marked entries flag.
*
* This is the only test in which we test the
* H5C__FLUSH_MARKED_ENTRIES_FLAG. The hope is that since
* we test the two features extensively by themselves, so
* it should be sufficient to verify that they play together
* as expected.
*/
int test_num = 21;
unsigned int flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG;
int spec_size = 4;
int check_size = 4;
unsigned init_expected_index_len = 4;
size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (2 * PICO_ENTRY_SIZE);
unsigned expected_index_len = 6;
size_t expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (VARIABLE_ENTRY_SIZE / 4) +
(VARIABLE_ENTRY_SIZE / 2) + (2 * PICO_ENTRY_SIZE);
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 11,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ TRUE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ TRUE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 10,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 12,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
if (pass) /* test #22 */
{
/* Mix things up some more.
*
* Load lots of entries, some of which have flush functions that
* resize, dirty, and move two entries that are not in the
* cache.
*
* Also load entries that have flush ops on entries that are in
* cache.
*/
int test_num = 22;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 6;
int check_size = 4;
unsigned init_expected_index_len = 6;
size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (4 * PICO_ENTRY_SIZE);
unsigned expected_index_len = 10;
size_t expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (2 * (VARIABLE_ENTRY_SIZE / 4)) +
(2 * (VARIABLE_ENTRY_SIZE / 2)) + (4 * PICO_ENTRY_SIZE);
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 11,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[5] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 5,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 10,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 12,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
if (pass) /* test #23 */
{
/* Repeat test #23 with the flush invalidate flag set.
*
* Mix things up some more.
*
* Load lots of entries, some of which have flush functions that
* resize, dirty, and move two entries that are not in the
* cache.
*
* Also load entries that have flush ops on entries that are in
* cache.
*/
int test_num = 23;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 6;
int check_size = 4;
unsigned init_expected_index_len = 6;
size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (4 * PICO_ENTRY_SIZE);
unsigned expected_index_len = 0;
size_t expected_index_size = 0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 11,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 6,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 0,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 1,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ TRUE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 10,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[5] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 5,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 20,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 0,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 10,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 4,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 12,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
/* So much for tests involving only flush operations.
*
* Now create some tests mixing flush ops and pins.
*/
if (pass) /* test #24 */
{
/* Pico entries 50 and 150 pin pico entry 100, and also dirty
* pico entry 100 on flush.
*/
int test_num = 24;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 3;
int check_size = 0;
unsigned init_expected_index_len = 3;
size_t init_expected_index_size = 3 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 3;
size_t expected_index_size = 3 * PICO_ENTRY_SIZE;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 1,
/* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 150,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 1,
/* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #25 */
{
/* Repeat the previous test with the flush invalidate flag.
*
* Pico entries 50 and 150 pin pico entry 100, and also dirty
* pico entry 100 on flush.
*/
int test_num = 25;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 3;
int check_size = 0;
unsigned init_expected_index_len = 3;
size_t init_expected_index_size = 3 * PICO_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = (size_t)0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 50,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 1,
/* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ PICO_ENTRY_TYPE,
/* entry_index = */ 150,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 1,
/* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 1,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ (size_t)0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
}
if (pass) /* test #26 */
{
/* This one is complex.
*
* In the following overvies table, VET stands for
* VARIABLE_ENTRY_TYPE.
*
* In trying to follow what happens when we flush the
* set of entries constructed below, recall that each
* flush operation is executed the first time the
* entry is flushed, and then not executed again.
* This may be a weakness in the tests, but that
* is the way it is for now.
*
* After thinking about it for a while, I'm not sure that
* the interaction between pins and flush operations needs
* all that much testing, as the two are essentially
* orthoginal. Thus this is a bit of a smoke check to
* verify that we get the expected results.
*
* (VET, 100) initially not resident in cache
*
* (VET, 200) initially clean and resident in cache
*
* (VET, 300) initially not resident in cache
*
* (VET, 2100) initially clean and resident in cache
*
* (VET, 2200) initially not resident in cache
*
* (VET, 2300) initially clean and resident in cache
*
* (VET, 1000) initially clean, and in cache
* dirties (VET, 100)
* resizes (VET, 200)
* dirty (VET, 300) -- dirty first to bring into cache.
* moves (VET, 300)
*
* (VET, 2000) initially clean, and in cache
* dirties (VET, 2100)
* resizes (VET, 2200)
* moves (VET, 2300)
*
* (VET, 350) initially clean, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 350)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 450) initially dirty, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* moves (VET, 450)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 650) initially clean, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 650)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 750) initially dirty, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 750)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 500) initially dirty, and in cache
* dirties (VET, 350)
* dirties (VET, 450)
* dirties (VET, 650)
* dirties (VET, 750)
*/
int test_num = 26;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 10;
int check_size = 3;
unsigned init_expected_index_len = 10;
size_t init_expected_index_size = 10 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 13;
size_t expected_index_size = 9 * VARIABLE_ENTRY_SIZE;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 200,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2300,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1000,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2000,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[5] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 5,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 350,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 350, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[6] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 6,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 450,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 450, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[7] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 7,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 650,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 650, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[8] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 8,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 750,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 750, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[9] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 9,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 500,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 350, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 450, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 650, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 750, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 100,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 300,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ TRUE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2200,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ TRUE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
if (pass) /* test #27 */
{
/* Repeat test #26 with the flush invalidate flag.
*
* In the following overview table, VET stands for
* VARIABLE_ENTRY_TYPE.
*
* In trying to follow what happens when we flush the
* set of entries constructed below, recall that each
* flush operation is executed the first time the
* entry is flushed, and then not executed again.
* This may be a weakness in the tests, but that
* is the way it is for now.
*
* After thinking about it for a while, I'm not sure that
* the interaction between pins and flush operations needs
* all that much testing, as the two are essentially
* orthoginal. The big thing is to verify that flushes of
* pinned entries with flush ops result in the expected
* updates of the cache.
*
* Thus this is a bit of a smoke check to * verify that we
* get the expected results.
*
* (VET, 100) initially not resident in cache
*
* (VET, 200) initially clean and resident in cache
*
* (VET, 300) initially not resident in cache
*
* (VET, 2100) initially clean and resident in cache
*
* (VET, 2200) initially not resident in cache
*
* (VET, 2300) initially clean and resident in cache
*
* (VET, 1000) initially clean, and in cache
* dirties (VET, 100)
* resizes (VET, 200)
* dirty (VET, 300) -- dirty first to bring into cache.
* moves (VET, 300)
*
* (VET, 2000) initially clean, and in cache
* dirties (VET, 2100)
* resizes (VET, 2200)
* moves (VET, 2300)
*
* (VET, 350) initially clean, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 350)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 450) initially dirty, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* moves (VET, 450)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 650) initially clean, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 650)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 750) initially dirty, and in cache
* pins (VET, 1000)
* dirties (VET, 1000)
* resizes (VET, 750)
* pins (VET, 2000)
* dirties (VET, 2000)
*
* (VET, 500) initially dirty, and in cache
* dirties (VET, 350)
* dirties (VET, 450)
* dirties (VET, 650)
* dirties (VET, 750)
*/
int test_num = 27;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 10;
int check_size = 3;
unsigned init_expected_index_len = 10;
size_t init_expected_index_size = 10 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = (size_t)0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 200,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2300,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 1000,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2000,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[5] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 5,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 350,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 350, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[6] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 6,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 450,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 450, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[7] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 7,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 650,
/* insert_flag = */ TRUE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 650, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[8] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 8,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 750,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 2,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 750, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[9] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 9,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 500,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 4,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 350, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 450, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 650, FALSE, 0, NULL},
{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 750, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 100,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 300,
/* expected_size = */ VARIABLE_ENTRY_SIZE,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 2200,
/* expected_size = */ VARIABLE_ENTRY_SIZE / 2,
/* in_cache = */ FALSE,
/* at_main_addr = */ TRUE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
if (pass) /* test #28 */
{
/* Test the expected fheap case, in which an entry dirties
* and resizes itself, and dirties an entry which it has
* pinned.
*/
int test_num = 28;
unsigned int flush_flags = H5C__NO_FLAGS_SET;
int spec_size = 5;
int check_size = 0;
unsigned init_expected_index_len = 5;
size_t init_expected_index_size = 3 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 5;
size_t expected_index_size = 4 * VARIABLE_ENTRY_SIZE;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 200,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 2,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 200, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 300,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {400, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 400, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 300, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 400,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 500,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 500, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 500, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ FALSE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ 0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
if (pass) /* test #29 */
{
/* Repeat test #28 with the flush invalidate flag.
*
* Test the expected fheap case, in which an entry dirties
* and resizes itself, and dirties an entry which it has
* pinned.
*/
int test_num = 29;
unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG;
int spec_size = 5;
int check_size = 0;
unsigned init_expected_index_len = 5;
size_t init_expected_index_size = 3 * VARIABLE_ENTRY_SIZE;
unsigned expected_index_len = 0;
size_t expected_index_size = 0;
HDassert(spec_size <= max_num_spec);
HDassert(check_size <= max_num_check);
spec[0] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 0,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 100,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[1] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 1,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 200,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 2,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 200, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[2] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 2,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 300,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {400, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 400, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 300, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[3] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 3,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 400,
/* insert_flag = */ FALSE,
/* flags = */ H5C__NO_FLAGS_SET,
/* resize_flag = */ FALSE,
/* new_size = */ 0,
/* num_pins = */ 0,
/* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 0,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
spec[4] = (struct fo_flush_cache_test_spec){
/* entry_num = */ 4,
/* entry_type = */ VARIABLE_ENTRY_TYPE,
/* entry_index = */ 500,
/* insert_flag = */ FALSE,
/* flags = */ H5C__DIRTIED_FLAG,
/* resize_flag = */ TRUE,
/* new_size = */ VARIABLE_ENTRY_SIZE / 4,
/* num_pins = */ 1,
/* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0},
/* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0},
/* num_flush_ops = */ 3,
/* flush_ops = */
/* op_code: type: idx: flag: size: order_ptr: */
{{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL},
{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 500, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL},
{FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 500, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL},
{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}},
/* expected_deserialized = */ TRUE,
/* expected_serialized = */ TRUE,
/* expected_destroyed = */ TRUE};
checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0,
/* entry_type = */ 0,
/* entry_index = */ 0,
/* expected_size = */ 0,
/* in_cache = */ FALSE,
/* at_main_addr = */ FALSE,
/* is_dirty = */ FALSE,
/* is_protected = */ FALSE,
/* is_pinned = */ FALSE,
/* expected_deserialized = */ FALSE,
/* expected_serialized = */ FALSE,
/* expected_destroyed = */ FALSE};
check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec,
init_expected_index_len, init_expected_index_size,
expected_index_len, expected_index_size, check_size, checks);
reset_entries();
}
HDfree(checks);
HDfree(spec);
/* finally finish up with the flush ops eviction test */
check_flush_cache__flush_op_eviction_test(file_ptr);
} /* check_flush_cache__flush_ops() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__flush_op_test()
*
* Purpose: Run a flush op flush cache test. Of the nature of
* flush operations, this is a multi-entry test.
*
* Return: void
*
* Programmer: John Mainzer
* 9/3/06
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__flush_op_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, int spec_size,
const struct fo_flush_cache_test_spec spec[],
unsigned init_expected_index_len, size_t init_expected_index_size,
unsigned expected_index_len, size_t expected_index_size, int check_size,
struct fo_flush_entry_check check[])
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
int i;
int j;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to flush op test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache not empty at beginning of flush op test #%d.", test_num);
failure_mssg = msg;
}
else if ((spec_size < 1) || (spec == NULL)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to flush op test #%d.", test_num);
failure_mssg = msg;
}
i = 0;
while (pass && (i < spec_size)) {
if ((spec[i].entry_num != i) || (spec[i].entry_type < 0) ||
(spec[i].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[i].entry_index < 0) ||
(spec[i].entry_index > max_indices[spec[i].entry_type]) || (spec[i].num_pins < 0) ||
(spec[i].num_pins > MAX_PINS) || (spec[i].num_flush_ops < 0) ||
(spec[i].num_flush_ops > MAX_FLUSH_OPS)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "bad data in spec[%d] on entry to flush op test #%d.", i, test_num);
failure_mssg = msg;
}
i++;
}
i = 0;
while (pass && (i < check_size)) {
if ((check[i].entry_num != i) || (check[i].entry_type < 0) ||
(check[i].entry_type >= NUMBER_OF_ENTRY_TYPES) || (check[i].entry_index < 0) ||
(check[i].entry_index > max_indices[check[i].entry_type]) ||
(check[i].expected_size <= (size_t)0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "bad data in check[%d] on entry to flush op test #%d.", i, test_num);
failure_mssg = msg;
}
i++;
}
i = 0;
while (pass && (i < spec_size)) {
if (spec[i].insert_flag) {
insert_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].flags);
}
else {
protect_entry(file_ptr, spec[i].entry_type, spec[i].entry_index);
if (spec[i].resize_flag)
resize_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].new_size, TRUE);
unprotect_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].flags);
}
for (j = 0; j < spec[i].num_pins; j++) {
create_pinned_entry_dependency(file_ptr, spec[i].entry_type, spec[i].entry_index,
spec[i].pin_type[j], spec[i].pin_idx[j]);
}
for (j = 0; j < spec[i].num_flush_ops; j++) {
add_flush_op(spec[i].entry_type, spec[i].entry_index, spec[i].flush_ops[j].op_code,
spec[i].flush_ops[j].type, spec[i].flush_ops[j].idx, spec[i].flush_ops[j].flag,
spec[i].flush_ops[j].size, spec[i].flush_ops[j].order_ptr);
}
i++;
}
if (pass) {
if ((cache_ptr->index_len != init_expected_index_len) ||
(cache_ptr->index_size != init_expected_index_size)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size before flush in flush op test #%d.",
test_num);
failure_mssg = msg;
}
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message")
if (!pass) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in flush op test #%d.", flush_flags,
test_num);
failure_mssg = msg;
}
}
i = 0;
while (pass && (i < spec_size)) {
base_addr = entries[spec[i].entry_type];
entry_ptr = &(base_addr[spec[i].entry_index]);
if ((entry_ptr->deserialized != spec[i].expected_deserialized) ||
(entry_ptr->serialized != spec[i].expected_serialized) ||
(entry_ptr->destroyed != spec[i].expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Bad status on entry %d after flush op test #%d.", i, test_num);
failure_mssg = msg;
}
i++;
}
if (pass) {
i = 0;
while (pass && (i < check_size)) {
if (check[i].in_cache != entry_in_cache(cache_ptr, check[i].entry_type, check[i].entry_index)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Check1 failed on entry %d after flush op test #%d.", i,
test_num);
failure_mssg = msg;
}
base_addr = entries[check[i].entry_type];
entry_ptr = &(base_addr[check[i].entry_index]);
if ((entry_ptr->size != check[i].expected_size) ||
((!entry_ptr->header.destroy_in_progress) && (check[i].in_cache) &&
(entry_ptr->header.size != check[i].expected_size)) ||
(entry_ptr->at_main_addr != check[i].at_main_addr) ||
(entry_ptr->is_dirty != check[i].is_dirty) ||
(entry_ptr->header.is_dirty != check[i].is_dirty) ||
(entry_ptr->is_protected != check[i].is_protected) ||
(entry_ptr->header.is_protected != check[i].is_protected) ||
(entry_ptr->is_pinned != check[i].is_pinned) ||
(entry_ptr->header.is_pinned != check[i].is_pinned) ||
(entry_ptr->deserialized != check[i].expected_deserialized) ||
(entry_ptr->serialized != check[i].expected_serialized) ||
(entry_ptr->destroyed != check[i].expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Check2 failed on entry %d after flush op test #%d.", i,
test_num);
failure_mssg = msg;
}
i++;
}
}
if (pass) {
if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) &&
((cache_ptr->index_len != expected_index_len) ||
(cache_ptr->index_size != expected_index_size))) ||
(((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) &&
((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in flush op test #%d.",
test_num);
failure_mssg = msg;
}
}
/* clean up the cache to prep for the next test */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.")
if (!pass) {
HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in flush op test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) ||
(cache_ptr->clean_index_size != 0) || (cache_ptr->dirty_index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected cache len/size/cs/ds after cleanup in flush op test #%d.", test_num);
failure_mssg = msg;
}
}
i = 0;
while (pass && (i < spec_size)) {
base_addr = entries[spec[i].entry_type];
entry_ptr = &(base_addr[spec[i].entry_index]);
entry_ptr->size = entry_sizes[spec[i].entry_type];
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
i++;
}
i = 0;
while (pass && (i < check_size)) {
base_addr = entries[check[i].entry_type];
entry_ptr = &(base_addr[check[i].entry_index]);
entry_ptr->size = entry_sizes[check[i].entry_type];
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
i++;
}
} /* check_flush_cache__flush_op_test() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__flush_op_eviction_test()
*
* Purpose: Verify that flush operations work as expected when an
* entry is evicted.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 10/3/06
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__flush_op_eviction_test(H5F_t *file_ptr)
{
struct expected_entry_status *expected = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
const int num_variable_entries = 10;
const int num_monster_entries = 31;
int num_large_entries = 14;
const int num_total_entries = num_variable_entries + num_monster_entries + num_large_entries;
test_entry_t *entry_ptr;
test_entry_t *base_addr;
expected = HDmalloc((size_t)num_total_entries * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* the expected array is used to maintain a table of the expected status of every
* entry used in this test. Note that since the function that processes this
* array only processes as much of it as it is told to, we don't have to
* worry about maintaining the status of entries that we haven't used yet.
*/
for (i = 0; i < num_variable_entries; i++) {
expected[i].entry_type = VARIABLE_ENTRY_TYPE;
expected[i].entry_index = (int)(i);
expected[i].size = VARIABLE_ENTRY_SIZE;
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = TRUE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type));
HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx));
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
/* NOTE: special cases for particular variable entries */
expected[0].size = VARIABLE_ENTRY_SIZE / 4;
expected[0].is_pinned = TRUE;
expected[1].size = VARIABLE_ENTRY_SIZE / 4;
expected[2].is_dirty = FALSE;
expected[3].size = VARIABLE_ENTRY_SIZE / 4;
expected[4].is_dirty = FALSE;
expected[5].size = VARIABLE_ENTRY_SIZE / 4;
expected[6].size = VARIABLE_ENTRY_SIZE / 2;
expected[7].size = VARIABLE_ENTRY_SIZE / 2;
expected[8].is_dirty = FALSE;
expected[9].is_dirty = FALSE;
expected[9].is_pinned = TRUE;
for (; i < num_variable_entries + num_monster_entries; i++) {
expected[i].entry_type = MONSTER_ENTRY_TYPE;
expected[i].entry_index = (int)(i - num_variable_entries);
expected[i].size = MONSTER_ENTRY_SIZE;
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = TRUE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type));
HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx));
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
for (; i < num_total_entries; i++) {
expected[i].entry_type = LARGE_ENTRY_TYPE;
expected[i].entry_index = (int)(i - num_monster_entries - num_variable_entries);
expected[i].size = LARGE_ENTRY_SIZE;
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = TRUE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type));
HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx));
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
HDassert(i == num_total_entries);
pass = TRUE;
}
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to flush ops test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at start of flush ops eviction test.";
}
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of flush op eviction test.";
}
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
}
}
if (pass) {
/* the basic idea in this test is to insert a bunch of entries
* with flush operations associated with them, and then load
* other entries into the cache until the cache is full. At
* that point, load yet more entries into the cache, and see
* if the flush operations are performed as expected.
*
* To make things a bit more interesting, we also include a
* couple of pins.
*/
/* reset the stats before we start. If stats are enabled, we will
* check to see if they are as expected at the end.
*/
H5C_stats__reset(cache_ptr);
/* load a few entries with pin relationships and flush ops.
* Start by just loading the entries.
*/
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0, (VARIABLE_ENTRY_SIZE / 4), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1, (VARIABLE_ENTRY_SIZE / 4), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3, (VARIABLE_ENTRY_SIZE / 4), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 4);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 4, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5, (VARIABLE_ENTRY_SIZE / 4), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6, (VARIABLE_ENTRY_SIZE / 2), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7, (VARIABLE_ENTRY_SIZE / 2), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9, H5C__NO_FLAGS_SET);
if ((cache_ptr->index_len != 10) ||
(cache_ptr->index_size !=
(4 * (VARIABLE_ENTRY_SIZE / 4)) + (2 * (VARIABLE_ENTRY_SIZE / 2)) + (4 * VARIABLE_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 1.";
}
}
if (pass) {
/* Now set up the pinning relationships:
*
* Briefly, (VET, 0) is pinned by (VET, 1), (VET, 3), and (VET, 5)
* (VET, 9) is pinned by (VET, 5), and (VET, 7)
*/
create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 1, VARIABLE_ENTRY_TYPE, 0);
create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 3, VARIABLE_ENTRY_TYPE, 0);
create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 5, VARIABLE_ENTRY_TYPE, 0);
create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 5, VARIABLE_ENTRY_TYPE, 9);
create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 7, VARIABLE_ENTRY_TYPE, 9);
/* Next, set up the flush operations:
*
* Briefly, (VET, 1) dirties (VET, 0)
* resizes (VET, 0) to 3/4 VARIABLE_ENTRY_SIZE
*
* (VET, 3) dirties (VET, 0)
* resizes (VET, 0) to VARIABLE_ENTRY_SIZE
* moves (VET, 0) to its alternate address
*
* (VET, 5) dirties (VET, 0)
* resizes itself to VARIABLE_ENTRY_SIZE / 2
*
* (VET, 7) dirties (VET, 9)
*
* (VET, 9) dirties (VET, 8)
*/
add_flush_op(VARIABLE_ENTRY_TYPE, 1, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 1, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, TRUE,
3 * VARIABLE_ENTRY_SIZE / 4, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, TRUE,
VARIABLE_ENTRY_SIZE, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 5, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 5, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 5, TRUE,
VARIABLE_ENTRY_SIZE / 2, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 7, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 9, FALSE, (size_t)0, NULL);
add_flush_op(VARIABLE_ENTRY_TYPE, 9, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 8, FALSE, (size_t)0, NULL);
}
if (pass) {
/* to summarize, at present the following variable size entries
* are in cache with the following characteristics:
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 2.5 KB Y Y - -
*
* (VET, 1) Y 2.5 KB Y N 0 dirty (VET, 0),
* resize (VET, 0) to 7.5 KB
*
* (VET, 2) Y 10 KB N N - -
*
*
* (VET, 3) Y 2.5 KB N N 0 dirty (VET, 0)
* resize (VET, 0) to 10 KB
* move (VET, 0) to its alternate address
*
* (VET, 4) Y 10 KB N N - -
*
*
* (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0)
* resize (VET, 5) to 5 KB
*
* (VET, 6) Y 5 KB Y N - -
*
* (VET, 7) Y 5 KB Y N 9 dirty (VET, 9)
*
* (VET, 8) Y 10 KB N N - -
*
* (VET, 9) Y 10 KB N N - dirty (VET, 8)
*
* Recall that in this test bed, flush operations are executed the
* first time the associated entry is flushed, and are then
* deleted.
*/
/* Now fill up the cache with other, unrelated entries */
for (i = 0; i < 31; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < 1; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* The cache should now be exactly full */
if ((cache_ptr->index_len != 42) || (cache_ptr->index_size != 2 * 1024 * 1024) ||
(cache_ptr->index_size !=
((4 * VARIABLE_ENTRY_SIZE / 4) + (2 * VARIABLE_ENTRY_SIZE / 2) + (4 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (1 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 2.";
}
else {
/* verify the expected status of all entries we have loaded to date: */
num_large_entries = 1;
verify_entry_status(cache_ptr, 0,
(num_variable_entries + num_monster_entries + num_large_entries), expected);
}
}
if (pass) {
/* Now load a large entry. This should result in the eviction
* of (VET,2), and the increase in the size of (VET, 0) from .25
* VARIABLE_ENTRY_SIZE to .75 VARIABLE_ENTRY_SIZE.
*
* The following table illustrates the intended state of affairs
* after the eviction:
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 7.5 KB Y Y - -
*
* (VET, 1) Y 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) Y 2.5 KB Y N 0 dirty (VET, 0)
* resize (VET, 0) to 10 KB
* move (VET, 0) to its alternate address
*
* (VET, 4) Y 10 KB N N - -
*
* (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0)
* resize (VET, 5) to 5 KB
*
* (VET, 6) Y 5 KB Y N - -
*
* (VET, 7) Y 5 KB Y N 9 dirty (VET, 9)
*
* (VET, 8) Y 10 KB N N - -
*
* (VET, 9) Y 10 KB N Y - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[0].size = 3 * VARIABLE_ENTRY_SIZE / 4;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[2].in_cache = FALSE;
expected[2].destroyed = TRUE;
num_large_entries = 2;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG);
if ((cache_ptr->index_len != 42) ||
(cache_ptr->index_size !=
(2 * 1024 * 1024) - (VARIABLE_ENTRY_SIZE) + (VARIABLE_ENTRY_SIZE / 2) + (LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size != ((1 * (3 * VARIABLE_ENTRY_SIZE / 4)) + (3 * VARIABLE_ENTRY_SIZE / 4) +
(2 * VARIABLE_ENTRY_SIZE / 2) + (3 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (2 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 3.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 1, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* Now load another large entry. This should result in the eviction
* of (VET, 4), the increase in the size of (VET, 0) from .75
* VARIABLE_ENTRY_SIZE to 1.0 VARIABLE_ENTRY_SIZE, and the renaming
* of (VET, 0) to its alternate address.
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 10 KB Y Y - -
*
* (VET, 1) Y 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) Y 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0)
* resize (VET, 5) to 5 KB
*
* (VET, 6) Y 5 KB Y N - -
*
* (VET, 7) Y 5 KB Y N 9 dirty (VET, 9)
*
* (VET, 8) Y 10 KB N N - -
*
* (VET, 9) Y 10 KB N Y - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[0].size = VARIABLE_ENTRY_SIZE;
expected[0].at_main_addr = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[4].in_cache = FALSE;
expected[4].destroyed = TRUE;
num_large_entries = 3;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__DIRTIED_FLAG);
if ((cache_ptr->index_len != 42) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (2 * VARIABLE_ENTRY_SIZE) +
(3 * VARIABLE_ENTRY_SIZE / 4) + (2 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((3 * VARIABLE_ENTRY_SIZE / 4) + (2 * VARIABLE_ENTRY_SIZE / 2) + (3 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (3 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 4.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 2, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* load two more large entries. This should result in (VET, 5) being
* flushed, and increasing its size from 1/4 VARIABLE_ENTRY_SIZE to
* VARIABLE_ENTRY_SIZE.
*
* As a result of this size increase, the cache will have to look
* for another entry to evict. After flushing (VET, 6) and (VET, 7),
* it should evict (VET, 8), yielding the needed memory and dirtying
* (VET, 9).
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 10 KB Y Y - -
*
* (VET, 1) Y 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) Y 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) Y 5 KB N N 0, 9 -
*
* (VET, 6) Y 5 KB N N - -
*
* (VET, 7) Y 5 KB N N 9 -
*
* (VET, 8) N 10 KB N N - -
*
* (VET, 9) Y 10 KB N Y - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[5].size = VARIABLE_ENTRY_SIZE / 2;
expected[5].is_dirty = FALSE;
expected[5].serialized = TRUE;
expected[6].is_dirty = FALSE;
expected[6].serialized = TRUE;
expected[7].is_dirty = FALSE;
expected[7].serialized = TRUE;
expected[8].in_cache = FALSE;
expected[8].destroyed = TRUE;
expected[9].is_dirty = TRUE;
num_large_entries = 5;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 4);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 4, H5C__DIRTIED_FLAG);
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) +
(1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) +
(4 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((2 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (5 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 5.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 3, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* now touch all the non VARIABLE_ENTRY_TYPE entries in the
* cache to bring all the VARIABLE_ENTRY_TYPE entries to the
* end of the LRU list.
*
* Note that we don't have to worry about (VET, 0) and (VET, 9)
* as they are pinned and thus not in the LRU list to begin with.
*/
for (i = 0; i < 31; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < 5; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) +
(1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) +
(4 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((2 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (5 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 6.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 4, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* Now load three more large entries. This should result
* in the evictions of (VET, 1), (VET, 3), and (VET, 5), and the
* unpinning of (VET, 0)
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 10 KB Y N - -
*
* (VET, 1) N 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) N 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) N 5 KB N N - -
*
* (VET, 6) Y 5 KB N N - -
*
* (VET, 7) Y 5 KB N N 9 -
*
* (VET, 8) N 10 KB N N - -
*
* (VET, 9) Y 10 KB N Y - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[0].is_pinned = FALSE;
expected[1].in_cache = FALSE;
expected[1].destroyed = TRUE;
expected[3].in_cache = FALSE;
expected[3].destroyed = TRUE;
expected[5].in_cache = FALSE;
expected[5].destroyed = TRUE;
num_large_entries = 8;
for (i = 5; i < 8; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) +
(1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) +
(7 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (8 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 7.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 5, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* load another large entry. (VET, 6) should be evicted.
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 10 KB Y N - -
*
* (VET, 1) N 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) N 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) N 5 KB N N - -
*
* (VET, 6) N 5 KB N N - -
*
* (VET, 7) Y 5 KB N N 9 -
*
* (VET, 8) N 10 KB N N - -
*
* (VET, 9) Y 10 KB N Y - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[6].in_cache = FALSE;
expected[6].destroyed = TRUE;
num_large_entries = 9;
for (i = 8; i < 9; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) -
(VARIABLE_ENTRY_SIZE / 2) + (8 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size != ((1 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) +
(31 * MONSTER_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 8.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 6, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* Load another large entry.
*
* (VET, 7) should be evicted, and (VET, 9) should be unpinned.
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) Y 10 KB Y N - -
*
* (VET, 1) N 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) N 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) N 5 KB N N - -
*
* (VET, 6) N 5 KB N N - -
*
* (VET, 7) N 5 KB N N - -
*
* (VET, 8) N 10 KB N N - -
*
* (VET, 9) Y 10 KB Y N - dirty (VET, 8)
*
* Start by updating the expected table for the expected changes in entry status:
*/
expected[7].in_cache = FALSE;
expected[7].destroyed = TRUE;
expected[9].is_pinned = FALSE;
num_large_entries = 10;
for (i = 9; i < 10; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size !=
(2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (10 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 9.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 7, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* Again, touch all the non VARIABLE_ENTRY_TYPE entries in the
* cache to bring all the VARIABLE_ENTRY_TYPE entries to the
* end of the LRU list.
*
* Both (VET, 0) and (VET, 7) have been unpinned, so they are
* now in the LRU list.
*/
for (i = 0; i < 31; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < 10; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 43) ||
(cache_ptr->index_size !=
(2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (10 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 10.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 8, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* load two more large entries. Things get a bit complicated here,
* so I'll go through the operation step by step.
*
* Initially, the cache has 4 KB of empty space, so the first entry
* (LET, 10) is loaded via calls to H5C_protect() H5C_unprotect()
* without causing any evictions.
*
* However, this is not the case for the call of H5C_protect() on
* (LET, 11).
*
* Before inserting (LET, 11), H5C_protect(LET, 11) must try to
* free up at least 4 KB of space. To do this, it starts scanning
* up the LRU list to find entries to evict.
*
* (VET, 0) is at the bottom of the LRU list, and thus is the first
* entry considered. However, it is dirty, so it flushed to disk,
* moved to the top of the LRU list, and marked clean.
*
* (VET, 9) is the next entry on the bottom of the LRU list. It is
* dirty too, calls its serialize callback function to construct an
* on disk image of the entry, and moves it to the top of the LRU
* list after the serialize callback returns.
*
* However, (VET 9)'s serialize function needs to modify (VET, 8),
* which is currently not in cache. Thus it calls H5C_protect(VET, 8)
* to gain access to it. H5C_protect(VET, 8) loads (VET, 8), and
* then attempts to evict entries to make space for it.
*
* However, H5C_make_space_in_cache() now exits without taking
* any action on re-entrant calls. Thus H5C_protect(VET, 8) simply
* loads the entry into the cache -- resulting in a cache that is
* 10 KB oversize. The subsequent unprotect puts (VET, 8) at the
* head of the LRU and marks it dirty.
*
* After (VET, 9) is serialized, it is flushed, and moved to the
* head of the LRU.
*
* At this point, the H5C_make_space_in_cache() call made by
* H5C_protect(LET, 11) now has 14 KB of space to make.
*
* The next entries on the LRU are (MET, 0) thru (MET, 30),
* (LET, 0) thru (LET, 10), and (VET, 8) -- all of which are dirty,
* and are therefore flushed and moved to the head of the LRU list.
*
* The next entry on the bottom of the LRU list is (VET, 0), which
* is clean, and is therefore evicted, leaving H5C_make_space_in_cache()
* with 4 KB of space to create.
*
* This space is sufficient, so H5C_protect(VET, 8) inserts
* (VET, 8) into the cache's index, marks it as protected, and
* returns to the serialize function for (VET, 9).
*
* When the serialize function for (VET, 9) is done with (VET, 8), it
* calls H5C_unprotect(VET, 8), which marks (VET, 8) as dirty and
* unprotected, and places it at the head of the LRU.
*
* (VET, 0) is the next item on the LRU -- it is clean and is therefore
* evicted -- leaving 6 KB of free space after (LET, 11) is inserted
* into the cache.
*
* H5C_unprotect(LET, 11) marks (LET, 11) as unprotected, and then
* returns as well.
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) N 10 KB N N - -
*
* (VET, 1) N 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) N 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) N 5 KB N N - -
*
* (VET, 6) N 5 KB N N - -
*
* (VET, 7) N 5 KB N N - -
*
* (VET, 8) Y 10 KB N N - -
*
* (VET, 9) N 10 KB N N - -
*
* Start by updating the expected table for the expected changes in
* entry status:
*
* Note that we reset the loaded, flushed, and destroyed
* fields of (VET,8) so we can track what is happening.
*/
base_addr = entries[VARIABLE_ENTRY_TYPE];
entry_ptr = &(base_addr[8]);
entry_ptr->deserialized = FALSE;
entry_ptr->deserialized = FALSE;
entry_ptr->destroyed = FALSE;
expected[0].in_cache = FALSE;
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].destroyed = TRUE;
expected[8].in_cache = TRUE;
expected[8].is_dirty = FALSE;
expected[8].deserialized = TRUE;
expected[8].serialized = TRUE;
expected[8].destroyed = FALSE;
expected[9].in_cache = FALSE;
expected[9].is_dirty = FALSE;
expected[9].serialized = TRUE;
expected[9].destroyed = TRUE;
expected[10].in_cache = TRUE;
expected[10].is_dirty = FALSE;
expected[10].serialized = TRUE;
expected[10].destroyed = FALSE;
num_large_entries = 12;
for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1;
i++) {
expected[i].is_dirty = FALSE;
expected[i].serialized = TRUE;
}
for (i = 10; i < 12; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 44) ||
(cache_ptr->index_size != (2 * 1024 * 1024) - (2 * 1024) - (1 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((1 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (12 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 11.";
}
/* verify entry status */
verify_entry_status(cache_ptr, 9, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* protect and unprotect VET 9 to evict MET 0 */
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9, H5C__NO_FLAGS_SET);
/* protect and unprotect VET 8 to dirty it and move it to the
* top of the LRU. Since we are dirtying it again, reset its
* serialized flag.
*/
base_addr = entries[VARIABLE_ENTRY_TYPE];
entry_ptr = &(base_addr[8]);
entry_ptr->serialized = FALSE;
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8, H5C__DIRTIED_FLAG);
/* Again, touch all the non VARIABLE_ENTRY_TYPE entries in the
* cache to evict VET 9 and move VET 8 to the bottom of the LRU.
*
* Must do this twice to get the desired result.
*/
/* skip MET 0 in first pass so that we evict VET 9 when we
* reload MET 0
*
* Since we are reloading MET 0, reset its destroyed flag.
*/
base_addr = entries[MONSTER_ENTRY_TYPE];
entry_ptr = &(base_addr[0]);
entry_ptr->destroyed = FALSE;
for (i = 1; i < num_monster_entries; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < num_large_entries; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < num_monster_entries; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
for (i = 0; i < num_large_entries; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* update the expected array to mark all these entries dirty again. */
for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1;
i++) {
expected[i].is_dirty = TRUE;
}
/* update MET 0 to set its in cache flag, and reset
* its destroyed flag
*/
expected[10].in_cache = TRUE;
/* pass through non variable entries will flush VET 8, and evict VET 9.
* Update accordingly.
*/
expected[8].in_cache = TRUE;
expected[8].is_dirty = TRUE;
expected[8].serialized = FALSE;
expected[8].destroyed = FALSE;
expected[9].in_cache = FALSE;
expected[9].is_dirty = FALSE;
expected[9].serialized = TRUE;
expected[9].destroyed = TRUE;
/* verify cache size */
if ((cache_ptr->index_len != 44) ||
(cache_ptr->index_size !=
(2 * 1024 * 1024) - (5 * VARIABLE_ENTRY_SIZE) + (11 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size !=
((1 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (12 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 12.";
}
/* modifications to the H5C__flush_single_entry() function have
* changed the behavior of the cache slightly, causing
* this test to fail. Comment out for now -- come back and
* fix if all goes well.
*/
/* verify entry status */
verify_entry_status(cache_ptr, 10, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
if (pass) {
/* Load two more large entries.
*
* Since (VET, 8) is dirty, at first this will just cause (VET, 8)
* to be flushed.
*
* But all other entries in the cache are dirty, so the cache will
* flush them all, and then evict (VET, 8) on the second pass.
*
* The following table shows the expected states of the variable
* size entries after the test.
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (VET, 0) N 10 KB N N - -
*
* (VET, 1) N 2.5 KB N N - -
*
* (VET, 2) N 10 KB N N - -
*
* (VET, 3) N 2.5 KB N N - -
*
* (VET, 4) N 10 KB N N - -
*
* (VET, 5) N 5 KB N N - -
*
* (VET, 6) N 5 KB N N - -
*
* (VET, 7) N 5 KB N N - -
*
* (VET, 8) N 10 KB N N - -
*
* (VET, 9) N 10 KB N N - -
*
* Start by updating the expected table for the expected changes in
* entry status:
*/
expected[8].in_cache = FALSE;
expected[8].is_dirty = FALSE;
expected[8].serialized = TRUE;
expected[8].destroyed = TRUE;
num_large_entries = 14;
/* a newly loaded entry is not inserted in the cache until after
* space has been made for it. Thus (LET, 13) will not be flushed.
*/
for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1;
i++) {
expected[i].is_dirty = FALSE;
expected[i].serialized = TRUE;
}
for (i = 12; i < 14; i++) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* verify cache size */
if ((cache_ptr->index_len != 45) ||
(cache_ptr->index_size !=
(2 * 1024 * 1024) - (6 * VARIABLE_ENTRY_SIZE) + (13 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->index_size != ((31 * MONSTER_ENTRY_SIZE) + (14 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in flush op eviction test 13.";
}
/* modifications to the H5C__flush_single_entry() function have
* changed the behavior of the cache slightly, causing
* this test to fail. Comment out for now -- come back and
* fix if all goes well.
*/
/* verify entry status */
verify_entry_status(cache_ptr, 11, (num_variable_entries + num_monster_entries + num_large_entries),
expected);
}
/* at this point we have cycled all the variable size entries through
* the cache.
*
* flush the cache and end the test.
*/
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush invalidate failed after flush op eviction test")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test";
}
}
#if H5C_COLLECT_CACHE_STATS
/* If we are collecting stats, check to see if we get the expected
* values.
*
* Testing the stats code is fairly new, but given the extent
* to which I find myself depending on the stats, I've decided
* to start testing the stats whenever it is convenient to do
* so.
*/
if (pass) {
if ((cache_ptr->insertions[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->flushes[VARIABLE_ENTRY_TYPE] != 9) ||
(cache_ptr->evictions[VARIABLE_ENTRY_TYPE] != 12) ||
(cache_ptr->take_ownerships[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[VARIABLE_ENTRY_TYPE] != 1) ||
(cache_ptr->entry_flush_moves[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[VARIABLE_ENTRY_TYPE] != 2) || (cache_ptr->unpins[VARIABLE_ENTRY_TYPE] != 2) ||
(cache_ptr->dirty_pins[VARIABLE_ENTRY_TYPE] != 2) ||
(cache_ptr->pinned_flushes[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[VARIABLE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[VARIABLE_ENTRY_TYPE] != 3) ||
(cache_ptr->size_decreases[VARIABLE_ENTRY_TYPE] != 6) ||
(cache_ptr->entry_flush_size_changes[VARIABLE_ENTRY_TYPE] != 1) ||
(cache_ptr->cache_flush_size_changes[VARIABLE_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg =
"Unexpected variable size entry stats in check_flush_cache__flush_op_eviction_test().";
}
}
if (pass) {
if ((cache_ptr->insertions[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->flushes[LARGE_ENTRY_TYPE] != 25) ||
(cache_ptr->evictions[LARGE_ENTRY_TYPE] != 14) ||
(cache_ptr->take_ownerships[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->unpins[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[LARGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[LARGE_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected large entry stats in check_flush_cache__flush_op_eviction_test().";
}
}
if (pass) {
if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 62) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry stats in check_flush_cache__flush_op_eviction_test().";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
reset_entries();
}
HDfree(expected);
} /* check_flush_cache__flush_op_eviction_test() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__single_entry()
*
* Purpose: Verify that flush_cache behaves as expected when the cache
* contains only one element.
*
* Return: void
*
* Programmer: John Mainzer
* 1/12/05
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__single_entry(H5F_t *file_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to single entry case.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at beginning of single entry case.";
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 1,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 2,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 3,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 4,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 5,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 6,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 7,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 8,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 9,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 10,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 11,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 12,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 13,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 14,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 15,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 16,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 17,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 18,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 19,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 20,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 21,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 22,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 23,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 24,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 25,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 26,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 27,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 28,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 29,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 30,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 31,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 32,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ FALSE,
/* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ TRUE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 33,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 34,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 35,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 36,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 37,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 38,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 39,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 40,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 41,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 42,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 43,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 44,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 45,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 46,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 47,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 48,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__NO_FLAGS_SET,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 49,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 50,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__NO_FLAGS_SET,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 51,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 52,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 53,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 54,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 55,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 56,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 57,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 58,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 59,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 60,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ FALSE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 61,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 62,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ TRUE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 63,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
if (pass) {
check_flush_cache__single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ 64,
/* entry_type */ PICO_ENTRY_TYPE,
/* entry_idx */ 0,
/* insert_flag */ TRUE,
/* flags */ H5C__SET_FLUSH_MARKER_FLAG,
/* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG |
H5C__FLUSH_MARKED_ENTRIES_FLAG,
/* expected_deserialized */ FALSE,
/* expected_serialized */ FALSE,
/* expected_destroyed */ TRUE);
}
/* Now run single entry tests for pinned entries. Test all combinations
* of:
*
* 1) Unpin by unprotect vs. unpin by call to H5C_unpin_entry().
*
* 2) Marked dirty by unprotect or not.
*
* 3) Marked dirty by call to H5C_mark_entry_dirty() or not.
*
* 4) Marked dirty by call to H5C_mark_entry_dirty() while protected
* or not.
*
* 5) Marked dirty by call to H5C_mark_entry_dirty() while pinned or not.
*
* 6) Entry marked for flush or not.
*
* 7) Call flush with H5C__FLUSH_MARKED_ENTRIES_FLAG or not.
*
* 8) Call flush with H5C__FLUSH_CLEAR_ONLY_FLAG or not.
*
* This yields a total of 256 tests.
*
* The tests and their expected results are given in the spec table
* below. The values assigned to the expected_serialized,
* and expected_destroyed fields are somewhat arcane, so the following
* overview may be useful.
*
* In addition to simply checking to see if the test case runs,
* we also check to see if the desired operations take place on the
* cache entry. Thus expected_serialized is set to TRUE if we
* we expect the entry to be flushed, and expected_destroyed is set
* to TRUE if we expect the entry to be destroyed.
*
* In this test, we are working with pinned entries which can't be
* evicted, so expected_destroyed is always FALSE. We could pull it
* from the table, but it is a hold over from the code this test
* was adapted from, and it doesn't do any particular harm.
*
* In general, we expect an entry to be flushed if it is dirty, and
* flush in invoked WITHOUT the H5C__FLUSH_CLEAR_ONLY_FLAG. However,
* there are exceptions: If flush is invoked with the
* H5C__FLUSH_MARKED_ENTRIES_FLAG, only marked entries will be flushed.
*
* Further, unprotecting an entry with the H5C__SET_FLUSH_MARKER_FLAG
* will NOT mark the entry unless the entry has either been marked
* dirty either before or durting the unprotect call. This results in
* some counterintuitive entries in the table. It make be useful to
* look in the test code to see the exact order of operations.
*
* Similarly, we expect an entry to be cleared if it is dirty, and
* flush is invoked WITH the H5C__FLUSH_CLEAR_ONLY_FLAG. Again, there
* are exceptions -- If flush is also invoked with the
* H5C__FLUSH_MARKED_ENTRIES_FLAG, only the marked entries will be
* cleared.
*
* The above comments about applying unprotect with the
* H5C__SET_FLUSH_MARKER_FLAG apply here as well.
*/
if (pass) {
struct pinned_single_entry_test_spec *spec = NULL;
size_t i;
spec = HDmalloc(256 * sizeof(struct pinned_single_entry_test_spec));
if (spec == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocated pinned single entry test spec array";
}
for (i = 0; i < 256; i++) {
int test_num;
int entry_type;
int entry_idx;
hbool_t dirty_flag;
hbool_t mark_dirty;
hbool_t pop_mark_dirty_prot;
hbool_t pop_mark_dirty_pinned;
hbool_t unprotect_unpin;
unsigned int flags;
unsigned int flush_flags;
hbool_t expected_serialized;
hbool_t expected_destroyed;
test_num = (int)(i + 1);
entry_type = PICO_ENTRY_TYPE;
entry_idx = 0;
/* Generate alternating sequences of TRUE/FALSE */
dirty_flag = (i / 16) % 2;
mark_dirty = (i / 8) % 2;
pop_mark_dirty_prot = (i / 4) % 2;
pop_mark_dirty_pinned = (i / 2) % 2;
unprotect_unpin = i % 2;
/* Generate alternating sequences of H5C__NO_FLAGS_SET
* and H5C__SET_FLUSH_MARKER_FLAG
*/
if ((i / 32) % 2)
flags = H5C__SET_FLUSH_MARKER_FLAG;
else
flags = H5C__NO_FLAGS_SET;
/*
* Generate sequences of H5C__NO_FLAGS_SET,
* H5C__FLUSH_MARKED_ENTRIES_FLAG, H5C__FLUSH_CLEAR_ONLY_FLAG
* and H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG
*/
switch (i / 64) {
case 0:
flush_flags = H5C__NO_FLAGS_SET;
break;
case 1:
flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG;
break;
case 2:
flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG;
break;
case 3:
flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG;
break;
default:
flush_flags = H5C__NO_FLAGS_SET;
break;
}
expected_serialized = FALSE;
if (0 == (flush_flags & H5C__FLUSH_CLEAR_ONLY_FLAG)) {
if (flush_flags & H5C__FLUSH_MARKED_ENTRIES_FLAG) {
if (flags & H5C__SET_FLUSH_MARKER_FLAG) {
if (mark_dirty && pop_mark_dirty_prot) {
expected_serialized = TRUE;
}
else if (dirty_flag || pop_mark_dirty_prot) {
expected_serialized = TRUE;
}
}
}
else {
if (dirty_flag || mark_dirty || pop_mark_dirty_prot || pop_mark_dirty_pinned)
expected_serialized = TRUE;
}
}
expected_destroyed = FALSE;
spec[i] = (struct pinned_single_entry_test_spec){
test_num,
entry_type,
entry_idx,
dirty_flag,
mark_dirty,
pop_mark_dirty_prot,
pop_mark_dirty_pinned,
unprotect_unpin,
flags,
flush_flags,
expected_serialized,
expected_destroyed,
};
}
i = 0;
while (pass && (i < 256)) {
check_flush_cache__pinned_single_entry_test(
/* file_ptr */ file_ptr,
/* test_num */ spec[i].test_num,
/* entry_type */ spec[i].entry_type,
/* entry_idx */ spec[i].entry_idx,
/* dirty_flag */ spec[i].dirty_flag,
/* mark_dirty */ spec[i].mark_dirty,
/* pop_mark_dirty_prot */ spec[i].pop_mark_dirty_prot,
/* pop_mark_dirty_pinned */ spec[i].pop_mark_dirty_pinned,
/* unprotect_unpin */ spec[i].unprotect_unpin,
/* flags */ spec[i].flags,
/* flush_flags */ spec[i].flush_flags,
/* expected_serialized */ spec[i].expected_serialized,
/* expected_destroyed */ spec[i].expected_destroyed);
i++;
}
HDfree(spec);
}
} /* check_flush_cache__single_entry() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__single_entry_test()
*
* Purpose: Run a single entry flush cache test.
*
* Return: void
*
* Programmer: John Mainzer
* 1/12/05
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx,
hbool_t insert_flag, unsigned int flags, unsigned int flush_flags,
hbool_t expected_deserialized, hbool_t expected_serialized,
hbool_t expected_destroyed)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
test_entry_t *base_addr;
test_entry_t *entry_ptr = NULL;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache not empty at beginning of single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((entry_type < 0) || (entry_type >= NUMBER_OF_ENTRY_TYPES) || (entry_idx < 0) ||
(entry_idx > max_indices[entry_type])) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Bad parameters on entry to single entry test #%d.", test_num);
failure_mssg = msg;
}
if (pass) {
base_addr = entries[entry_type];
entry_ptr = &(base_addr[entry_idx]);
if (insert_flag) {
insert_entry(file_ptr, entry_type, entry_idx, flags);
}
else {
protect_entry(file_ptr, entry_type, entry_idx);
unprotect_entry(file_ptr, entry_type, entry_idx, flags);
}
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure mssg.")
if (!pass) { /* construct and set actual failure message */
HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in single entry test #%d.",
flush_flags, test_num);
failure_mssg = msg;
}
else if ((entry_ptr->deserialized != expected_deserialized) ||
(entry_ptr->serialized != expected_serialized) ||
(entry_ptr->destroyed != expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry status after flush in single entry test #%d.",
test_num);
failure_mssg = msg;
}
else if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) &&
((cache_ptr->index_len != 1) || (cache_ptr->index_size != entry_sizes[entry_type]))) ||
(((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) &&
((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in single entry test #%d.",
test_num);
failure_mssg = msg;
}
}
/* clean up the cache to prep for the next test */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy failure mssg.")
if (!pass) { /* construct and set actual failure message */
HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in single entry test #%d.",
test_num);
failure_mssg = msg;
}
else {
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
}
}
} /* check_flush_cache__single_entry_test() */
/*-------------------------------------------------------------------------
* Function: check_flush_cache__pinned_single_entry_test()
*
* Purpose: Run a pinned single entry flush cache test.
*
* Return: void
*
* Programmer: John Mainzer
* 3/28/06
*
*-------------------------------------------------------------------------
*/
static void
check_flush_cache__pinned_single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx,
hbool_t unprot_dirty_flag, hbool_t mark_dirty,
hbool_t pop_mark_dirty_prot, hbool_t pop_mark_dirty_pinned,
hbool_t unprotect_unpin, unsigned int flags,
unsigned int flush_flags, hbool_t expected_serialized,
hbool_t expected_destroyed)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
hbool_t expected_deserialized = TRUE;
test_entry_t *base_addr;
test_entry_t *entry_ptr = NULL;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to pinned single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache not empty at beginning of pinned single entry test #%d.",
test_num);
failure_mssg = msg;
}
else if ((entry_type < 0) || (entry_type >= NUMBER_OF_ENTRY_TYPES) || (entry_idx < 0) ||
(entry_idx > max_indices[entry_type])) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Bad parameters on entry to pinned single entry test #%d.", test_num);
failure_mssg = msg;
}
if (pass) {
base_addr = entries[entry_type];
entry_ptr = &(base_addr[entry_idx]);
protect_entry(file_ptr, entry_type, entry_idx);
if (pop_mark_dirty_prot) {
mark_entry_dirty(entry_type, entry_idx);
}
unprotect_entry(file_ptr, entry_type, entry_idx,
(unprot_dirty_flag ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) |
(flags | H5C__PIN_ENTRY_FLAG));
if (mark_dirty) {
mark_entry_dirty(entry_type, entry_idx);
}
if (pop_mark_dirty_pinned) {
mark_entry_dirty(entry_type, entry_idx);
}
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message\n")
if (!pass) { /* construct and set the correct failure message */
HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in pinned single entry test #%d.",
flush_flags, test_num);
failure_mssg = msg;
}
else if ((entry_ptr->deserialized != expected_deserialized) ||
(entry_ptr->serialized != expected_serialized) ||
(entry_ptr->destroyed != expected_destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected entry status after flush in pinned single entry test #%d.", test_num);
failure_mssg = msg;
}
else if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) &&
((cache_ptr->index_len != 1) || (cache_ptr->index_size != entry_sizes[entry_type]))) ||
(((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) &&
((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected cache len/size after flush in pinned single entry test #%d.", test_num);
failure_mssg = msg;
}
}
/* clean up the cache to prep for the next test */
if (pass) {
if (unprotect_unpin) {
protect_entry(file_ptr, entry_type, entry_idx);
unprotect_entry(file_ptr, entry_type, entry_idx,
(unprot_dirty_flag ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) |
H5C__UNPIN_ENTRY_FLAG);
}
else {
unpin_entry(entry_type, entry_idx);
}
}
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg\n")
if (!pass) {
HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in pinned single entry test #%d.",
test_num);
failure_mssg = msg;
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected cache len/size after cleanup in pinned single entry test #%d.", test_num);
failure_mssg = msg;
}
else {
entry_ptr->deserialized = FALSE;
entry_ptr->serialized = FALSE;
entry_ptr->destroyed = FALSE;
}
}
} /* check_flush_cache__pinned_single_entry_test() */
/*-------------------------------------------------------------------------
* Function: check_get_entry_status()
*
* Purpose: Verify that H5C_get_entry_status() behaves as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 4/28/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_get_entry_status(unsigned paged)
{
static char msg[128];
herr_t result;
hbool_t in_cache;
hbool_t is_dirty;
hbool_t is_protected;
hbool_t is_pinned;
size_t entry_size;
H5F_t *file_ptr = NULL;
test_entry_t *base_addr = NULL;
test_entry_t *entry_ptr = NULL;
if (paged)
TESTING("H5C_get_entry_status() functionality (paged aggregation)");
else
TESTING("H5C_get_entry_status() functionality");
pass = TRUE;
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "file_ptr NULL from setup_cache.";
}
else {
base_addr = entries[0];
entry_ptr = &(base_addr[0]);
}
}
if (pass) {
/* entry not in cache -- only in_cache should be touched by
* the call. Thus, only check that boolean.
*/
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 1.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 2.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, 0, 0);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || !is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 3.");
failure_mssg = msg;
}
}
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || is_protected || !is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 4.");
failure_mssg = msg;
}
}
if (pass) {
mark_entry_dirty(0, 0);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || !is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 5.");
failure_mssg = msg;
}
}
if (pass) {
unpin_entry(0, 0);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 6.");
failure_mssg = msg;
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_get_entry_status() */
/*-------------------------------------------------------------------------
* Function: check_expunge_entry()
*
* Purpose: Verify that H5C_expunge_entry() behaves as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 7/5/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_expunge_entry(unsigned paged)
{
static char msg[128];
herr_t result;
hbool_t in_cache;
hbool_t is_dirty;
hbool_t is_protected;
hbool_t is_pinned;
size_t entry_size;
H5F_t *file_ptr = NULL;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (paged)
TESTING("H5C_expunge_entry() functionality (paged aggregation)");
else
TESTING("H5C_expunge_entry() functionality");
pass = TRUE;
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
base_addr = entries[0];
entry_ptr = &(base_addr[0]);
}
if (pass) {
/* entry not in cache -- only in_cache should be touched by
* the status call. Thus, only check that boolean.
*/
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 1.");
failure_mssg = msg;
}
else if ((entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 1.");
failure_mssg = msg;
}
}
/* protect an entry to force the cache to load it, and then unprotect
* it without marking it dirty.
*/
if (pass) {
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 2.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 2.");
failure_mssg = msg;
}
}
/* Expunge the entry and then verify that it is no longer in the cache.
* Also verify that the entry was loaded and destroyed, but
* not flushed.
*/
if (pass) {
expunge_entry(file_ptr, 0, 0);
}
if (pass) {
/* entry shouldn't be in cache -- only in_cache should be touched
* by the status call. Thus, only check that boolean.
*/
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 3.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 3.");
failure_mssg = msg;
}
}
/* now repeat the process with a different entry. On unprotect
* mark the entry as dirty. Verify that it is not flushed.
*/
base_addr = entries[0];
entry_ptr = &(base_addr[1]);
if (pass) {
/* entry not in cache -- only in_cache should be touched by
* the status call. Thus, only check that boolean.
*/
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 4.");
failure_mssg = msg;
}
else if ((entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 4.");
failure_mssg = msg;
}
}
/* protect the entry to force the cache to load it, and then unprotect
* it with the dirty flag set.
*/
if (pass) {
protect_entry(file_ptr, 0, 1);
unprotect_entry(file_ptr, 0, 1, H5C__DIRTIED_FLAG);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 5.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 5.");
failure_mssg = msg;
}
}
/* Expunge the entry and then verify that it is no longer in the cache.
* Also verify that the entry was loaded and destroyed, but not
* flushed.
*/
if (pass) {
expunge_entry(file_ptr, 0, 1);
}
if (pass) {
/* entry shouldn't be in cache -- only in_cache should be touched
* by the status call. Thus, only check that boolean.
*/
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 6.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 6.");
failure_mssg = msg;
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_expunge_entry() */
/*-------------------------------------------------------------------------
* Function: check_multiple_read_protect()
*
* Purpose: Verify that multiple, simultaneous read protects of a
* single entry perform as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 4/1/07
*
*-------------------------------------------------------------------------
*/
static unsigned
check_multiple_read_protect(unsigned paged)
{
H5F_t *file_ptr = NULL;
#if H5C_COLLECT_CACHE_STATS
H5C_t *cache_ptr = NULL;
#endif /* H5C_COLLECT_CACHE_STATS */
test_entry_t *entry_ptr;
if (paged)
TESTING("multiple read only protects on a single entry (paged aggr)");
else
TESTING("multiple read only protects on a single entry");
pass = TRUE;
/* allocate a cache. Should succeed.
*
* Then to start with, proceed as follows:
*
* Read protect an entry.
*
* Then read protect the entry again. Should succeed.
*
* Read protect yet again. Should succeed.
*
* Unprotect with no changes, and then read protect twice again.
* Should succeed.
*
* Now unprotect three times. Should succeed.
*
* If stats are enabled, verify that correct stats are collected at
* every step.
*
* Also, verify internal state of read protects at every step.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
#if H5C_COLLECT_CACHE_STATS
cache_ptr = file_ptr->shared->cache;
#endif /* H5C_COLLECT_CACHE_STATS */
entry_ptr = &((entries[0])[0]);
if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) ||
(entry_ptr->header.ro_ref_count != 0)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 1.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 0) ||
(cache_ptr->max_read_protects[0] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 1.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
protect_entry_ro(file_ptr, 0, 0);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 1)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 2.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 1) ||
(cache_ptr->max_read_protects[0] != 1)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 2.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
protect_entry_ro(file_ptr, 0, 0);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 2)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 3.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 2) ||
(cache_ptr->max_read_protects[0] != 2)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 3.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 1)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 4.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 2) ||
(cache_ptr->max_read_protects[0] != 2)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 4.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
protect_entry_ro(file_ptr, 0, 0);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 2)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 5.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 3) ||
(cache_ptr->max_read_protects[0] != 2)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 5.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
protect_entry_ro(file_ptr, 0, 0);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 3)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 6.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 6.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 2)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 7.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 7.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) ||
(entry_ptr->header.ro_ref_count != 1)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 8.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 8.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) ||
(entry_ptr->header.ro_ref_count != 0)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 9.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 9.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
/* If we get this far, do a write protect and unprotect to verify
* that the stats are getting collected properly here as well.
*/
if (pass) {
protect_entry(file_ptr, 0, 0);
if ((!(entry_ptr->header.is_protected)) || (entry_ptr->header.is_read_only) ||
(entry_ptr->header.ro_ref_count != 0)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 10.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 1) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 10.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) ||
(entry_ptr->header.ro_ref_count != 0)) {
pass = FALSE;
failure_mssg = "Unexpected ro protected status 11.\n";
}
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 1) || (cache_ptr->read_protects[0] != 4) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 11.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
/* Finally, mix things up a little, using a mix of reads and
* and writes on different entries. Also include a pin to verify
* that it works as well.
*
* Stats are looking OK, so we will only test them one more time
* at the end to ensure that all is at it should be.
*/
if (pass) {
protect_entry(file_ptr, 0, 2); /* (0,2) write */
protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (1) */
protect_entry(file_ptr, 0, 6); /* (0,6) write */
unprotect_entry(file_ptr, 0, 2, /* (0,2) unprotect */
H5C__NO_FLAGS_SET);
protect_entry_ro(file_ptr, 0, 2); /* (0,2) read only (1) */
protect_entry(file_ptr, 0, 1); /* (0,1) write */
protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (2) */
protect_entry(file_ptr, 0, 0); /* (0,0) write */
protect_entry_ro(file_ptr, 0, 2); /* (0,2) read only (2) */
unprotect_entry(file_ptr, 0, 2, /* (0,2) read only (1) pin */
H5C__PIN_ENTRY_FLAG);
unprotect_entry(file_ptr, 0, 6, /* (0,6) unprotect */
H5C__NO_FLAGS_SET);
protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (3) */
unprotect_entry(file_ptr, 0, 2, /* (0,2) unprotect */
H5C__NO_FLAGS_SET);
unprotect_entry(file_ptr, 0, 1, /* (0,1) unprotect */
H5C__NO_FLAGS_SET);
if (pass) {
entry_ptr = &((entries[0])[4]);
if (H5C_pin_protected_entry((void *)entry_ptr) < 0) {
pass = FALSE;
failure_mssg = "H5C_pin_protected_entry() failed.\n";
}
else if (!(entry_ptr->header.is_pinned)) {
pass = FALSE;
failure_mssg = "entry (0,4) not pinned.\n";
}
else {
/* keep test bed sanity checks happy */
entry_ptr->is_pinned = TRUE;
}
}
unprotect_entry(file_ptr, 0, 4, /* (0,4) read only (2) */
H5C__NO_FLAGS_SET);
unprotect_entry(file_ptr, 0, 4, /* (0,4) read only (1) */
H5C__UNPIN_ENTRY_FLAG);
if (pass && (entry_ptr->header.is_pinned)) {
pass = FALSE;
failure_mssg = "entry (0,4) still pinned.\n";
}
unprotect_entry(file_ptr, 0, 4, /* (0,4) unprotect */
H5C__NO_FLAGS_SET);
unprotect_entry(file_ptr, 0, 0, /* (0,0) unprotect */
H5C__NO_FLAGS_SET);
unpin_entry(0, 2);
}
#if H5C_COLLECT_CACHE_STATS
if ((cache_ptr->write_protects[0] != 5) || (cache_ptr->read_protects[0] != 9) ||
(cache_ptr->max_read_protects[0] != 3)) {
pass = FALSE;
failure_mssg = "Unexpected protect stats 11.\n";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_multiple_read_protect() */
/*-------------------------------------------------------------------------
* Function: check_move_entry()
*
* Purpose: Verify that H5C_move_entry behaves as expected. In
* particular, verify that it works correctly with pinned
* entries.
*
* Return: void
*
* Programmer: John Mainzer
* 4/26/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_move_entry(unsigned paged)
{
unsigned u;
H5F_t *file_ptr = NULL;
struct move_entry_test_spec test_specs[4] = {
{/* int entry_type = */ PICO_ENTRY_TYPE,
/* int entry_index = */ 10,
/* hbool_t is_pinned = */ FALSE,
/* hbool_t is_protected = */ FALSE},
{/* int entry_type = */ PICO_ENTRY_TYPE,
/* int entry_index = */ 20,
/* hbool_t is_pinned = */ TRUE,
/* hbool_t is_protected = */ FALSE},
{/* int entry_type = */ PICO_ENTRY_TYPE,
/* int entry_index = */ 30,
/* hbool_t is_pinned = */ FALSE,
/* hbool_t is_protected = */ TRUE},
{/* int entry_type = */ PICO_ENTRY_TYPE,
/* int entry_index = */ 40,
/* hbool_t is_pinned = */ TRUE,
/* hbool_t is_protected = */ TRUE},
};
if (paged)
TESTING("H5C_move_entry() functionality (paged aggregation)");
else
TESTING("H5C_move_entry() functionality");
pass = TRUE;
/* allocate a cache, load entries into it, and then move
* them. To the extent possible, verify that the desired
* actions took place.
*
* At present, we should do the following tests:
*
* 1) Move an unprotected, unpinned entry.
*
* 2) Move an unprotected, pinned entry.
*
* 3) Move a protected, unpinned entry.
*
* 4) Move a protected, pinned entry.
*
* In all cases, the entry should have moved to its
* new location, and have been marked dirty if it wasn't
* already.
*
* Unpinned entries should have been moved to the head
* of the LRU list.
*
* Pinned entries should remain untouched on the pinned entry
* list.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
}
u = 0;
while (pass && (u < NELMTS(test_specs))) {
check_move_entry__run_test(file_ptr, u, &(test_specs[u]));
u++;
}
if (pass)
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else
H5_FAILED();
if (!pass)
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
return (unsigned)!pass;
} /* check_move_entry() */
/*-------------------------------------------------------------------------
* Function: check_move_entry__run_test()
*
* Purpose: Run a move entry test.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/27/06
*
*-------------------------------------------------------------------------
*/
static void
check_move_entry__run_test(H5F_t *file_ptr, unsigned test_num, struct move_entry_test_spec *spec_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
static char msg[128];
unsigned int flags = H5C__NO_FLAGS_SET;
test_entry_t *base_addr;
test_entry_t *entry_ptr = NULL;
H5C_cache_entry_t *test_ptr = NULL;
if (cache_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to move test #%u.", test_num);
failure_mssg = msg;
}
else if (spec_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "spec_ptr NULL on entry to move test #%u.", test_num);
failure_mssg = msg;
}
if (pass) {
base_addr = entries[spec_ptr->entry_type];
entry_ptr = &(base_addr[spec_ptr->entry_index]);
if ((entry_ptr->self != entry_ptr) ||
((entry_ptr->cache_ptr != cache_ptr) && (entry_ptr->cache_ptr != NULL)) ||
(!(entry_ptr->at_main_addr)) || (entry_ptr->addr != entry_ptr->main_addr)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "bad entry_ptr in move test #%u.", test_num);
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index);
if (spec_ptr->is_pinned)
pin_entry(spec_ptr->entry_type, spec_ptr->entry_index);
if (!spec_ptr->is_protected)
unprotect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index, flags);
move_entry(cache_ptr, spec_ptr->entry_type, spec_ptr->entry_index, FALSE);
}
if (pass) {
/* verify that the move took place, and that the cache's internal
* structures are as expected. Note that some sanity checking is
* done by move_entry(), so we don't have to repeat it here.
*/
if (spec_ptr->is_pinned) {
if (!(entry_ptr->header.is_pinned)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Pinned entry not pinned after move in test #%u.", test_num);
failure_mssg = msg;
}
if (pass) {
if (spec_ptr->is_protected) {
} /* end if */
else {
/* Scan through the pinned entry list, looking for the entry */
test_ptr = cache_ptr->pel_head_ptr;
while ((test_ptr != NULL) && (test_ptr != (H5C_cache_entry_t *)entry_ptr))
test_ptr = test_ptr->next;
if (test_ptr == NULL) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Pinned entry not in pel after move in test #%u.",
test_num);
failure_mssg = msg;
}
} /* end else */
}
unpin_entry(spec_ptr->entry_type, spec_ptr->entry_index);
}
else {
if (entry_ptr->header.is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unpinned entry pinned after move in test #%u.", test_num);
failure_mssg = msg;
}
if (spec_ptr->is_protected) {
} /* end if */
else {
if ((entry_ptr->header.prev != NULL) ||
(cache_ptr->LRU_head_ptr != (H5C_cache_entry_t *)entry_ptr)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Entry not at head of LRU after move in test #%u.",
test_num);
failure_mssg = msg;
}
} /* end else */
}
if (spec_ptr->is_protected) {
if (!(entry_ptr->header.is_protected)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Protected entry not protected after move in test #%u.",
test_num);
failure_mssg = msg;
}
unprotect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index, flags);
} /* end if */
else {
if (entry_ptr->header.is_protected) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unprotected entry not unprotected after move in test #%u.",
test_num);
failure_mssg = msg;
}
} /* end else */
}
/* put the entry back where it started from */
move_entry(cache_ptr, spec_ptr->entry_type, spec_ptr->entry_index, TRUE);
} /* check_move_entry__run_test() */
/*-------------------------------------------------------------------------
* Function: check_pin_protected_entry()
*
* Purpose: Verify that H5C_pin_protected_entry behaves as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 4/28/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_pin_protected_entry(unsigned paged)
{
static char msg[128];
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (paged)
TESTING("H5C_pin_protected_entry() functionality (paged aggregation)");
else
TESTING("H5C_pin_protected_entry() functionality");
pass = TRUE;
/* Create a cache, protect an entry, and then use H5C_pin_protected_entry()
* to pin it. Verify that the entry is in fact pined. Unprotect the entry
* to unpin it, and then destroy the cache.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "file_ptr NULL from setup_cache.";
}
}
if (pass) {
protect_entry(file_ptr, 0, 0);
}
if (pass) {
base_addr = entries[0];
entry_ptr = &(base_addr[0]);
result = H5C_pin_protected_entry((void *)entry_ptr);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_pin_protected_entry() reports failure.");
failure_mssg = msg;
}
else if (!(entry_ptr->header.is_pinned)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "entry not pinned when it should be.");
failure_mssg = msg;
}
else {
entry_ptr->is_pinned = TRUE;
}
}
unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG);
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_pin_protected_entry() */
/*-------------------------------------------------------------------------
* Function: check_resize_entry()
*
* Purpose: Verify that H5C_resize_entry() and H5C_unprotect() resize
* entries as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 7/7/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_resize_entry(unsigned paged)
{
static char msg[128];
herr_t result;
hbool_t in_cache;
hbool_t is_dirty;
hbool_t is_protected;
hbool_t is_pinned;
size_t entry_size;
size_t reported_entry_size;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
test_entry_t *base_addr;
test_entry_t *entry_ptr = NULL;
if (paged)
TESTING("entry resize functionality (paged aggregation)");
else
TESTING("entry resize functionality");
/* Setup a cache and verify that it is empty.
*
* Then force the load of an entry by protecting it, and verify that
* the entry and cache have the expected sizes.
*
* Then unprotect the entry with the size changed flag and a reduced
* size. Verify that the entry and cache have the expected expected
* sizes.
*
* Use a second protect/unprotect cycle to restore the entry to
* its original size. Verify that the entry and cache have the
* expected sizes.
*
* Protect and unprotect the entry again to pin it. Use
* H5C_resize_entry to reduce its size. Verify that the entry
* and cache have the expected sizes.
*
* Use H5C_resize_entry again to restore the entry to its original
* size. Verify that the entry and cache have the expected sizes.
*
* Use a protect / unprotect cycle to unpin and destroy the entry.
* Verify that the entry and cache have the expected sizes.
*
*
* Obesrve that all the above tests have been done with only one
* entry in the cache. Repeat the tests with several entries in
* the cache.
*/
pass = TRUE;
/* tests with only one entry in the cache: */
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "file_ptr NULL from setup_cache.";
}
else {
cache_ptr = file_ptr->shared->cache;
base_addr = entries[LARGE_ENTRY_TYPE];
entry_ptr = &(base_addr[0]);
entry_size = LARGE_ENTRY_SIZE;
}
}
if (pass) {
if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->slist_len != 0) ||
(cache_ptr->slist_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 1.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
}
if (pass) {
if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) ||
(cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 2.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || !is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 1.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 1.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 2));
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry().");
failure_mssg = msg;
}
else {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 1.");
failure_mssg = msg;
}
else {
/* tidy up so we play nice with the standard protect / unprotect
* calls.
*/
entry_ptr->is_protected = FALSE;
entry_ptr->is_dirty = TRUE;
entry_ptr->size = LARGE_ENTRY_SIZE / 2;
}
}
}
if (pass) {
if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != (LARGE_ENTRY_SIZE / 2)) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE / 2))))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 3.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned ||
(reported_entry_size != (LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 2.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 2.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry().");
failure_mssg = msg;
}
else {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 2.");
failure_mssg = msg;
}
else {
/* tidy up so we play nice with the standard protect / unprotect
* calls.
*/
entry_ptr->is_protected = FALSE;
entry_ptr->is_dirty = TRUE;
entry_ptr->size = LARGE_ENTRY_SIZE;
}
}
}
if (pass) {
if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 4.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned ||
(reported_entry_size != LARGE_ENTRY_SIZE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 3.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 3.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__PIN_ENTRY_FLAG);
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 4));
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 1.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != (LARGE_ENTRY_SIZE / 4)) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE / 4))))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 5.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || !is_pinned ||
(reported_entry_size != (LARGE_ENTRY_SIZE / 4))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 4.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 4.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 2.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 6.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || !is_pinned ||
(reported_entry_size != LARGE_ENTRY_SIZE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 5.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 5.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__UNPIN_ENTRY_FLAG | H5C__DELETED_FLAG);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 6.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 6.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 7.");
failure_mssg = msg;
}
}
/* now repeat the above tests with several entries in the cache: */
if (pass) {
if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 8.");
failure_mssg = msg;
}
base_addr = entries[LARGE_ENTRY_TYPE];
entry_ptr = &(base_addr[3]);
entry_size = LARGE_ENTRY_SIZE;
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET);
}
if (pass) {
if ((cache_ptr->index_len != 3) || (cache_ptr->index_size != 3 * LARGE_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 9.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
}
if (pass) {
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * LARGE_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 10.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 7.");
failure_mssg = msg;
}
else if (!in_cache || is_dirty || !is_protected || is_pinned) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 7.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 7.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 2));
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry().");
failure_mssg = msg;
}
else {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 3.");
failure_mssg = msg;
}
else {
/* tidy up so we play nice with the standard protect / unprotect
* calls.
*/
entry_ptr->is_protected = FALSE;
entry_ptr->is_dirty = TRUE;
entry_ptr->size = LARGE_ENTRY_SIZE / 2;
}
}
}
if (pass) {
if ((cache_ptr->index_len != 4) ||
(cache_ptr->index_size != ((3 * LARGE_ENTRY_SIZE) + (LARGE_ENTRY_SIZE / 2))) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) ||
(cache_ptr->slist_size != (LARGE_ENTRY_SIZE + (LARGE_ENTRY_SIZE / 2)))))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 11.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 8.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned ||
(reported_entry_size != (LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 8.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 8.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry().");
failure_mssg = msg;
}
else {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 4.");
failure_mssg = msg;
}
else {
/* tidy up so we play nice with the standard protect / unprotect
* calls.
*/
entry_ptr->is_protected = FALSE;
entry_ptr->is_dirty = TRUE;
entry_ptr->size = LARGE_ENTRY_SIZE;
}
}
}
if (pass) {
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * LARGE_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 12.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 9.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || is_pinned ||
(reported_entry_size != LARGE_ENTRY_SIZE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 9.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 9.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__PIN_ENTRY_FLAG);
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 4));
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 3.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 4) ||
(cache_ptr->index_size != ((3 * LARGE_ENTRY_SIZE) + (LARGE_ENTRY_SIZE / 4))) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) ||
(cache_ptr->slist_size != (LARGE_ENTRY_SIZE + (LARGE_ENTRY_SIZE / 4)))))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 13.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 10.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || !is_pinned ||
(reported_entry_size != (LARGE_ENTRY_SIZE / 4))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 10.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 10.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 4.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * LARGE_ENTRY_SIZE)) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != (2 * LARGE_ENTRY_SIZE))))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 14.");
failure_mssg = msg;
}
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 11.");
failure_mssg = msg;
}
else if (!in_cache || !is_dirty || is_protected || !is_pinned ||
(reported_entry_size != LARGE_ENTRY_SIZE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 11.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 11.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__UNPIN_ENTRY_FLAG | H5C__DELETED_FLAG);
}
if (pass) {
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty,
&is_protected, &is_pinned, NULL, NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 12.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 12.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 12.");
failure_mssg = msg;
}
}
if (pass) {
if ((cache_ptr->index_len != 3) || (cache_ptr->index_size != (3 * LARGE_ENTRY_SIZE)) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 15.");
failure_mssg = msg;
}
}
if (pass) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__DELETED_FLAG);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DELETED_FLAG);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__DELETED_FLAG);
}
if (pass) {
if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 16.");
failure_mssg = msg;
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_resize_entry() */
/*-------------------------------------------------------------------------
* Function: check_evictions_enabled()
*
* Purpose: Verify that H5C_get_evictions_enabled() and
* H5C_set_evictions_enabled() functions perform as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 8/2/07
*
*-------------------------------------------------------------------------
*/
static unsigned
check_evictions_enabled(unsigned paged)
{
static char msg[128];
herr_t result;
hbool_t show_progress = FALSE;
hbool_t evictions_enabled;
hbool_t in_cache;
int i;
int mile_stone = 1;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
test_entry_t *base_addr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("evictions enabled/disabled functionality (paged aggregation)");
else
TESTING("evictions enabled/disabled functionality");
/* Setup a cache and verify that it is empty.
*
* Use H5C_get_evictions_enabled() to determine if evictions are
* currently enabled -- they should be.
*
* Load entries until the cache is full. Load one more. Verify that
* this caused an entry to be evicted.
*
* Insert an entry. Verify that this cases and entry to be evicted.
*
* Used H5C_set_evictions_enabled() to disable evictions. Verify
* with a call to H5C_get_evictions_enabled().
*
* Load another entry -- verify that this does not cause an entry
* to be evicted.
*
* Insert an entry -- verify that this does not cause an entry to
* be evicted.
*
* Use H5C_set_evictions_enabled() to re-enable evictions. Verify
* with a call to H5C_get_evictions_enabled().
*
* Protect and unprotect some of the entries in the cache. Verify
* that there are no evictions (since we only try to make space
* when we either insert or load a new entry).
*
* Protect an entry not in the cache. Verify that this causes
* two evictions.
*
* Used H5C_set_evictions_enabled() to disable evictions again.
* Verify with a call to H5C_get_evictions_enabled().
*
* Now flush and discard the cache -- should succeed.
*/
pass = TRUE;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* create the cache */
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(1 * 1024 * 1024), (size_t)(512 * 1024), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "file_ptr NULL from setup_cache.";
}
else {
cache_ptr = file_ptr->shared->cache;
base_addr = entries[MONSTER_ENTRY_TYPE];
}
}
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that it is empty */
if (pass) {
if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 1.");
failure_mssg = msg;
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that H5C_get_evictions_enabled() returns the expected value */
if (pass) {
result = H5C_get_evictions_enabled(cache_ptr, &evictions_enabled);
if ((result != SUCCEED) || (evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected evictions enabled 1.");
failure_mssg = msg;
}
}
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* fill the cache */
for (i = 0; i < 16; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
}
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that the cache is full */
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 2.");
failure_mssg = msg;
}
}
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* protect and unprotect another entry */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 16);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 16, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that an entry has been evicted */
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 3.");
failure_mssg = msg;
}
}
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
entry_ptr = &(base_addr[0]);
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 1.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 1.");
failure_mssg = msg;
}
}
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* insert an entry */
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 17, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 10 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that another entry has been evicted */
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 4.");
failure_mssg = msg;
}
}
if (show_progress) /* 11 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
entry_ptr = &(base_addr[1]);
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 2.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 2.");
failure_mssg = msg;
}
}
if (show_progress) /* 12 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* disable evictions */
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result != SUCCEED) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "can't disable evictions 1.");
failure_mssg = msg;
}
}
if (show_progress) /* 13 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that evictions are disabled */
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != FALSE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 5.");
failure_mssg = msg;
}
}
if (show_progress) /* 14 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* protect and unprotect another entry */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 18);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 18, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 15 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that no entry has been evicted */
if (pass) {
if ((cache_ptr->index_len != 17) || (cache_ptr->index_size != 17 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != FALSE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 6.");
failure_mssg = msg;
}
}
if (show_progress) /* 16 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* insert another entry */
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 19, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 17 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that no entry has been evicted */
if (pass) {
if ((cache_ptr->index_len != 18) || (cache_ptr->index_size != 18 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != FALSE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 7.");
failure_mssg = msg;
}
}
if (show_progress) /* 18 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* re-enable evictions */
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result != SUCCEED) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "can't enable evictions 1.");
failure_mssg = msg;
}
}
if (show_progress) /* 19 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* protect and unprotect an entry that is in the cache */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 19);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 19, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 20 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that no entries have been evicted */
if (pass) {
if ((cache_ptr->index_len != 18) || (cache_ptr->index_size != 18 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 8.");
failure_mssg = msg;
}
}
if (show_progress) /* 21 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* protect and unprotect an entry that isn't in the cache */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 20);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 20, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 22 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that the entries have been evicted to bring the
* cache back down to its normal size.
*/
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 9.");
failure_mssg = msg;
}
}
if (show_progress) /* 23 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
entry_ptr = &(base_addr[2]);
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 3.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 3.");
failure_mssg = msg;
}
}
if (show_progress) /* 24 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
entry_ptr = &(base_addr[3]);
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 4.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 4.");
failure_mssg = msg;
}
}
if (show_progress) /* 25 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* disable evictions again */
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result != SUCCEED) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "can't disable evictions 2.");
failure_mssg = msg;
}
}
if (show_progress) /* 26 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* protect and unprotect an entry that isn't in the cache, forcing
* the cache to grow.
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 21);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 21, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 27 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that the cache has grown */
if (pass) {
if ((cache_ptr->index_len != 17) || (cache_ptr->index_size != 17 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != FALSE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 10.");
failure_mssg = msg;
}
}
if (show_progress) /* 28 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* re-enable evictions again */
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result != SUCCEED) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "can't enable evictions 2.");
failure_mssg = msg;
}
}
if (show_progress) /* 29 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* insert an entry */
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 22, H5C__NO_FLAGS_SET);
}
if (show_progress) /* 30 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* verify that the cache has returned to its maximum size */
if (pass) {
if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->slist_len != 3) || (cache_ptr->slist_size != 3 * MONSTER_ENTRY_SIZE))) ||
(cache_ptr->evictions_enabled != TRUE)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected cache status 11.");
failure_mssg = msg;
}
}
if (show_progress) /* 31 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
entry_ptr = &(base_addr[4]);
result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5.");
failure_mssg = msg;
}
else if (in_cache) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected status 5.");
failure_mssg = msg;
}
else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Unexpected entry history 5.");
failure_mssg = msg;
}
}
if (show_progress) /* 32 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* disable evictions one last time before we shut down */
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, FALSE);
if (result != SUCCEED) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "can't disable evictions 3.");
failure_mssg = msg;
}
}
if (show_progress) /* 33 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (show_progress) /* 34 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_evictions_enabled() */
/*-------------------------------------------------------------------------
* Function: check_flush_protected_err()
*
* Purpose: Verify that an attempt to flush the cache when it contains
* a protected entry will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_flush_protected_err(unsigned paged)
{
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
if (paged)
TESTING("flush cache with protected entry error (paged aggregation)");
else
TESTING("flush cache with protected entry error");
pass = TRUE;
/* allocate a cache, protect an entry, and try to flush. This
* should fail. Unprotect the entry and flush again -- should
* succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (pass) {
cache_ptr = file_ptr->shared->cache;
}
protect_entry(file_ptr, 0, 0);
/* enable slist prior to flush */
if ((pass) && (H5C_set_slist_enabled(cache_ptr, TRUE, FALSE) < 0)) {
pass = FALSE;
failure_mssg = "unable to enable slist prior to flush.\n";
}
if ((pass) && (H5C_flush_cache(file_ptr, H5C__NO_FLAGS_SET) >= 0)) {
pass = FALSE;
failure_mssg = "flush succeeded on cache with protected entry.\n";
}
/* disable the slist after the flush */
if ((pass) && (H5C_set_slist_enabled(cache_ptr, FALSE, FALSE) < 0)) {
pass = FALSE;
failure_mssg = "unable to disable slist after flush.\n";
}
unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG);
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "flush failed after unprotect.\n")
}
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_flush_protected_err() */
/*-------------------------------------------------------------------------
* Function: check_destroy_pinned_err()
*
* Purpose: Verify that an attempt to destroy the cache when it contains
* a pinned entry that can't be unpined during the flush destroy
* will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 4/7/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_destroy_pinned_err(unsigned paged)
{
H5F_t *file_ptr = NULL;
if (paged)
TESTING("destroy cache with permanently pinned entry error (pgd aggr)");
else
TESTING("destroy cache with permanently pinned entry error");
pass = TRUE;
/* allocate a cache, pin an entry, and try to flush destroy. This
* should fail. Unpin the entry and flush destroy again -- should
* succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
if (H5C_prep_for_file_close(file_ptr) < 0) {
pass = FALSE;
failure_mssg = "unexpected failure of prep for file close.\n";
} /* end if */
if (H5C_dest(file_ptr) >= 0) {
pass = FALSE;
failure_mssg = "destroy succeeded on cache with pinned entry.\n";
} /* end if */
else {
unpin_entry(0, 0);
if (H5C_dest(file_ptr) < 0) {
pass = FALSE;
failure_mssg = "destroy failed after unpin.\n";
} /* end if */
else
file_ptr->shared->cache = NULL;
} /* end else */
if (saved_cache != NULL) {
file_ptr->shared->cache = saved_cache;
saved_cache = NULL;
} /* end if */
/* call takedown_cache() with a NULL file_ptr parameter.
* This causes the function to close and delete the file,
* while skipping the call to H5C_dest().
*/
takedown_cache(NULL, FALSE, FALSE);
} /* end if */
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass)
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
return (unsigned)!pass;
} /* check_destroy_pinned_err() */
/*-------------------------------------------------------------------------
* Function: check_destroy_protected_err()
*
* Purpose: Verify that an attempt to destroy the cache when it contains
* a protected entry will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_destroy_protected_err(unsigned paged)
{
H5F_t *file_ptr = NULL;
if (paged)
TESTING("destroy cache with protected entry error (paged aggregation)");
else
TESTING("destroy cache with protected entry error");
pass = TRUE;
/* allocate a cache, protect an entry, and try to flush. This
* should fail. Unprotect the entry and flush again -- should
* succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
/* Note: normally this call would go just before the series of
* flushes prior to file close -- in particular, all entries
* should be unprotected when this call is made.
*
* Thus H5C_prep_for_file_close() contains an assert to verify
* this. Since this assert would be triggered by the condition
* we are trying to test, put the call to H5C_prep_for_file_close()
* prior to the final protect call.
*/
if (H5C_prep_for_file_close(file_ptr) < 0) {
pass = FALSE;
failure_mssg = "unexpected failure of prep for file close.\n";
} /* end if */
protect_entry(file_ptr, 0, 0);
if (H5C_dest(file_ptr) >= 0) {
pass = FALSE;
failure_mssg = "destroy succeeded on cache with protected entry.\n";
} /* end if */
else {
unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG);
if (H5C_dest(file_ptr) < 0) {
pass = FALSE;
failure_mssg = "destroy failed after unprotect.\n";
} /* end if */
else {
file_ptr->shared->cache = NULL;
} /* end else */
} /* end else */
if (saved_cache != NULL) {
file_ptr->shared->cache = saved_cache;
saved_cache = NULL;
} /* end if */
/* call takedown_cache() with a NULL file_ptr parameter.
* This causes the function to close and delete the file,
* while skipping the call to H5C_dest().
*/
takedown_cache(NULL, FALSE, FALSE);
} /* end if */
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass)
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
return (unsigned)!pass;
} /* check_destroy_protected_err() */
/*-------------------------------------------------------------------------
* Function: check_duplicate_insert_err()
*
* Purpose: Verify that an attempt to insert and entry that is
* already in the cache will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_duplicate_insert_err(unsigned paged)
{
herr_t result = -1;
H5F_t *file_ptr = NULL;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
if (paged)
TESTING("duplicate entry insertion error (paged aggregation)");
else
TESTING("duplicate entry insertion error");
pass = TRUE;
/* allocate a cache, protect an entry, and then try to insert
* the entry again. This should fail. Unprotect the entry and
* destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
if (pass) {
base_addr = entries[0];
entry_ptr = &(base_addr[0]);
result =
H5C_insert_entry(file_ptr, types[0], entry_ptr->addr, (void *)entry_ptr, H5C__NO_FLAGS_SET);
if (result >= 0) {
pass = FALSE;
failure_mssg = "insert of duplicate entry succeeded.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG);
takedown_cache(file_ptr, FALSE, FALSE);
}
}
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_duplicate_insert_err() */
/*-------------------------------------------------------------------------
* Function: check_double_pin_err()
*
* Purpose: Verify that an attempt to pin an entry that is already
* pinned will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 4/24/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_double_pin_err(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("pin a pinned entry error (paged aggregation)");
else
TESTING("pin a pinned entry error");
pass = TRUE;
/* allocate a cache, protect an entry, unprotect it with the pin flag,
* protect it again, and then try to unprotect it again with the pin
* flag. This should fail. Unpin the entry and destroy the cache
* -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
protect_entry(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__PIN_ENTRY_FLAG);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to pin a pinned entry succeeded.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG);
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_double_pin_err() */
/*-------------------------------------------------------------------------
* Function: check_double_unpin_err()
*
* Purpose: Verify that an attempt to unpin an unpinned entry will
* generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 4/24/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_double_unpin_err(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("unpin an unpinned entry error (paged aggregation)");
else
TESTING("unpin an unpinned entry error");
pass = TRUE;
/* allocate a cache, protect an entry, unprotect it with the unpin flag.
* -- This should fail.
*
* Try again with H5C_unpin_entry -- this should also fail.
*
* Destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__UNPIN_ENTRY_FLAG);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to unpin an unpinned entry succeeded 1.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
}
if (pass) {
result = H5C_unpin_entry((void *)entry_ptr);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to unpin an unpinned entry succeeded 2.\n";
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_double_unpin_err() */
/*-------------------------------------------------------------------------
* Function: check_pin_entry_errs()
*
* Purpose: Verify that invalid calls to H5C_pin_protected_entry()
* generate errors as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 4/24/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_pin_entry_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("pin entry related errors (paged aggregation)");
else
TESTING("pin entry related errors");
pass = TRUE;
/* Allocate a cache, protect an entry, unprotect it with no flags,
* and then call H5C_pin_protected_entry() to pin it -- This should fail.
*
* Protect the entry again, unprotect it with a pin flag, protect it
* again, and then call H5C_pin_protected_entry() to pin it -- This
* should fail also.
*
* Unprotect the entry with the unpin flag.
*
* Destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_pin_protected_entry((void *)entry_ptr);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to pin an unprotected entry succeeded.\n";
}
else {
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
protect_entry(file_ptr, 0, 0);
}
}
if (pass) {
result = H5C_pin_protected_entry((void *)entry_ptr);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to pin a pinned, protected entry succeeded.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG);
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_pin_entry_errs() */
/*-------------------------------------------------------------------------
* Function: check_double_protect_err()
*
* Purpose: Verify that an attempt to protect an entry that is already
* protected will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_double_protect_err(unsigned paged)
{
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
H5C_cache_entry_t *cache_entry_ptr;
if (paged)
TESTING("protect a protected entry error (paged aggregation)");
else
TESTING("protect a protected entry error");
pass = TRUE;
/* allocate a cache, protect an entry, and then try to protect
* the entry again. This should fail. Unprotect the entry and
* destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[0], entry_ptr->addr,
&entry_ptr->addr, H5C__NO_FLAGS_SET);
if (cache_entry_ptr != NULL) {
pass = FALSE;
failure_mssg = "attempt to protect a protected entry succeeded.\n";
}
}
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_double_protect_err() */
/*-------------------------------------------------------------------------
* Function: check_double_unprotect_err()
*
* Purpose: Verify that an attempt to unprotect an entry that is already
* unprotected will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_double_unprotect_err(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("unprotect an unprotected entry error (paged aggregation)");
else
TESTING("unprotect an unprotected entry error");
pass = TRUE;
/* allocate a cache, protect an entry, unprotect it, and then try to
* unprotect the entry again. This should fail. Destroy the cache
* -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__NO_FLAGS_SET);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to unprotect an unprotected entry succeeded 1.\n";
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_double_unprotect_err() */
/*-------------------------------------------------------------------------
* Function: check_mark_entry_dirty_errs()
*
* Purpose: Verify that:
*
* 1) a call to H5C_mark_entry_dirty with
* and unpinned and unprotected entry will generate an
* error.
*
* Return: void
*
* Programmer: John Mainzer
* 5/17/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_mark_entry_dirty_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("mark entry dirty related errors (paged aggregation)");
else
TESTING("mark entry dirty related errors");
pass = TRUE;
/* allocate a cache, protect an entry, unprotect the entry without
* pinning it, and try to mark it dirty -- this should fail.
*
* Destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry(file_ptr, 0, 0);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_mark_entry_dirty((void *)entry_ptr);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to dirty a unpinned and unprotected entry succeeded.\n";
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_mark_entry_dirty_errs() */
/*-------------------------------------------------------------------------
* Function: check_expunge_entry_errs()
*
* Purpose: Verify that invalid calls to H5C_expunge_entry()
* generate errors as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 7/6/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_expunge_entry_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("expunge entry related errors (paged aggregation)");
else
TESTING("expunge entry related errors");
pass = TRUE;
/* Allocate a cache, protect an entry, and then call H5C_expunge_entry()
* to expunge it -- this should fail
*
* Unprotect the entry with the pinned flag, and then call
* H5C_expunge_entry() again. This should fail too.
*
* Finally, unpin the entry and call H5C_expunge_entry() yet again.
* This should succeed.
*
* Destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
entry_ptr = &((entries[0])[0]);
protect_entry(file_ptr, 0, 0);
}
if (pass) {
result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to expunge a protected entry succeeded.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
}
}
if (pass) {
result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to expunge a pinned entry succeeded.\n";
}
else {
unpin_entry(0, 0);
}
}
if (pass) {
result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET);
if (result < 0) {
pass = FALSE;
failure_mssg = "attempt to expunge an unpinned and unprotected entry failed.\n";
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_expunge_entry_errs() */
/*-------------------------------------------------------------------------
* Function: check_move_entry_errs()
*
* Purpose: Verify that invalid calls to H5C_move_entry()
* generates errors as expected.
*
* Return: void
*
* Programmer: Quincey Koziol
* 12/10/16
*
*-------------------------------------------------------------------------
*/
static unsigned
check_move_entry_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
test_entry_t *entry_ptr = NULL;
test_entry_t *entry_0_0_ptr;
test_entry_t *entry_0_1_ptr;
test_entry_t *entry_1_0_ptr;
if (paged)
TESTING("move entry related errors (paged aggregation)");
else
TESTING("move entry related errors");
pass = TRUE;
/* allocate a cache, and insert several entries. Try to move
* entries to other entries resident in the cache. This should
* fail. Destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
insert_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
insert_entry(file_ptr, 0, 1, H5C__NO_FLAGS_SET);
insert_entry(file_ptr, 1, 0, H5C__NO_FLAGS_SET);
entry_0_0_ptr = &((entries[0])[0]);
entry_0_1_ptr = &((entries[0])[1]);
entry_1_0_ptr = &((entries[1])[0]);
} /* end if */
if (pass) {
result = H5C_move_entry(cache_ptr, types[0], entry_0_0_ptr->addr, entry_0_1_ptr->addr);
if (result >= 0) {
pass = FALSE;
failure_mssg = "move to addr of same type succeeded.\n";
} /* end if */
} /* end if */
if (pass) {
result = H5C_move_entry(cache_ptr, types[0], entry_0_0_ptr->addr, entry_1_0_ptr->addr);
if (result >= 0) {
pass = FALSE;
failure_mssg = "move to addr of different type succeeded.\n";
} /* end if */
} /* end if */
if (pass)
takedown_cache(file_ptr, FALSE, FALSE);
/* Allocate a cache, protect an entry R/O, and then call
* H5C_move_entry() to move it -- this should fail.
*
* Finally, unprotect the entry and destroy the cache.
* This should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
insert_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
protect_entry_ro(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
} /* end if */
if (pass) {
result = H5C_move_entry(cache_ptr, types[0], entry_ptr->header.addr, entry_ptr->header.addr + 10);
if (result >= 0) {
pass = FALSE;
failure_mssg = "Call to H5C_move_entry on a R/O protected entry succeeded.\n";
} /* end if */
else
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
} /* end if */
if (pass)
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else {
H5_FAILED();
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
} /* end else */
return (unsigned)!pass;
} /* check_move_entry_errs() */
/*-------------------------------------------------------------------------
* Function: check_resize_entry_errs()
*
* Purpose: Verify that invalid calls to H5C_resize_entry()
* generates errors as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 7/7/06
*
*-------------------------------------------------------------------------
*/
static unsigned
check_resize_entry_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("resize entry related errors (paged aggregation)");
else
TESTING("resize entry related errors");
pass = TRUE;
/* Allocate a cache, protect an entry, and then call
* H5C_resize_entry() to resize it -- this should succeed.
*
* Unprotect the entry with the pinned flag, and then call
* H5C_resize_entry() again with new size of zero.
* This should fail.
*
* Finally, unpin the entry and destroy the cache.
* This should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
entry_ptr = &((entries[0])[0]);
protect_entry(file_ptr, 0, 0);
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (size_t)1);
if (result < 0) {
pass = FALSE;
failure_mssg = "Call to H5C_resize_entry on a protected entry failed.\n";
}
else {
unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG);
}
}
if (pass) {
result = H5C_resize_entry((void *)entry_ptr, (size_t)0);
if (result >= 0) {
pass = FALSE;
failure_mssg = "Call to H5C_resize_entry with 0 new size succeeded.\n";
}
else {
unpin_entry(0, 0);
}
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_resize_entry_errs() */
/*-------------------------------------------------------------------------
* Function: check_unprotect_ro_dirty_err()
*
* Purpose: If an entry is protected read only, verify that unprotecting
* it dirty will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 4/3/07
*
*-------------------------------------------------------------------------
*/
static unsigned
check_unprotect_ro_dirty_err(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
if (paged)
TESTING("unprotect a read only entry dirty error (paged aggregation)");
else
TESTING("unprotect a read only entry dirty error");
pass = TRUE;
/* allocate a cache, protect an entry read only, and then unprotect it
* with the dirtied flag set. This should fail. Destroy the cache
* -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry_ro(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result >= 0) {
pass = FALSE;
failure_mssg = "attempt to unprotect a ro entry dirty succeeded 1.\n";
}
}
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
/* allocate a another cache, protect an entry read only twice, and
* then unprotect it with the dirtied flag set. This should fail.
* Unprotect it with no flags set twice and then destroy the cache.
* This should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry_ro(file_ptr, 0, 0);
protect_entry_ro(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG);
if (result > 0) {
pass = FALSE;
failure_mssg = "attempt to unprotect a ro entry dirty succeeded 2.\n";
}
}
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_unprotect_ro_dirty_err() */
/*-------------------------------------------------------------------------
* Function: check_protect_ro_rw_err()
*
* Purpose: If an entry is protected read only, verify that protecting
* it rw will generate an error.
*
* Return: void
*
* Programmer: John Mainzer
* 4/9/07
*
*-------------------------------------------------------------------------
*/
static unsigned
check_protect_ro_rw_err(unsigned paged)
{
H5F_t *file_ptr = NULL;
test_entry_t *entry_ptr;
void *thing_ptr = NULL;
if (paged)
TESTING("protect a read only entry rw error (paged aggregation)");
else
TESTING("protect a read only entry rw error");
pass = TRUE;
/* allocate a cache, protect an entry read only, and then try to protect
* it again rw. This should fail.
*
* Unprotect the entry and destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
protect_entry_ro(file_ptr, 0, 0);
entry_ptr = &((entries[0])[0]);
}
if (pass) {
thing_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[0], entry_ptr->addr, &entry_ptr->addr,
H5C__NO_FLAGS_SET);
if (thing_ptr != NULL) {
pass = FALSE;
failure_mssg = "attempt to protect a ro entry rw succeeded.\n";
}
}
if (pass) {
unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_protect_ro_rw_err() */
/*-------------------------------------------------------------------------
* Function: check_protect_retries()
*
* Purpose: To exercise checksum verification retries for an entry with
* a speculative load.
*
* Return:
*
* Programmer:
*
*-------------------------------------------------------------------------
*/
static unsigned
check_protect_retries(unsigned paged)
{
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
test_entry_t *base_addr = NULL;
test_entry_t *entry_ptr = NULL;
H5C_cache_entry_t *cache_entry_ptr = NULL;
int32_t type;
int32_t idx;
if (paged)
TESTING("protect an entry to verify retries (paged aggregation)");
else
TESTING("protect an entry to verify retries");
pass = TRUE;
/* Set up the cache */
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
/* Set up read attempts for verifying checksum */
file_ptr->shared->read_attempts = 10;
file_ptr->shared->retries_nbins = 1;
}
/* Test only for this type which has a speculative load */
type = VARIABLE_ENTRY_TYPE;
idx = 0;
if (pass) {
cache_ptr = file_ptr->shared->cache;
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
/* test case (1):
* --actual_len is smaller the initial length from get_load_size()
* --verify_chksum() returns TRUE after max_verify_ct is reached
*
*/
entry_ptr->actual_len = entry_ptr->size / 2;
entry_ptr->max_verify_ct = 3;
entry_ptr->verify_ct = 0;
cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[type], entry_ptr->addr,
&entry_ptr->addr, H5C__READ_ONLY_FLAG);
if ((cache_entry_ptr != (void *)entry_ptr) || (!(entry_ptr->header.is_protected)) ||
(!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count <= 0) ||
(entry_ptr->header.type != types[type]) || (entry_ptr->size != entry_ptr->header.size) ||
(entry_ptr->addr != entry_ptr->header.addr) ||
(entry_ptr->verify_ct != entry_ptr->max_verify_ct)) {
pass = FALSE;
failure_mssg = "error from H5C_protect().";
}
else {
HDassert((entry_ptr->cache_ptr == NULL) || (entry_ptr->cache_ptr == cache_ptr));
entry_ptr->cache_ptr = cache_ptr;
entry_ptr->file_ptr = file_ptr;
entry_ptr->is_protected = TRUE;
entry_ptr->is_read_only = TRUE;
entry_ptr->ro_ref_count++;
}
HDassert(((entry_ptr->header).type)->id == type);
}
if (pass)
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, idx, H5C__NO_FLAGS_SET);
if (pass) {
entry_ptr = &(base_addr[++idx]);
/* test case (2):
* --actual_len is greater the initial length from get_load_size()
* --verify_chksum() returns FALSE even after all tries is reached
* (file_ptr->shared->read_attempts is smaller then max_verify_ct)
*/
entry_ptr->actual_len = entry_ptr->size * 2;
entry_ptr->max_verify_ct = 11;
entry_ptr->verify_ct = 0;
cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[type], entry_ptr->addr,
&entry_ptr->addr, H5C__READ_ONLY_FLAG);
/* H5C_protect() should fail after all retries fail */
if (cache_entry_ptr != NULL)
pass = FALSE;
}
takedown_cache(file_ptr, FALSE, FALSE);
reset_entries();
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_msg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_protect_retries() */
/*-------------------------------------------------------------------------
* Function: check_evictions_enabled_err()
*
* Purpose: Verify that H5C_get_evictions_enabled() and
* H5C_set_evictions_enabled() generate errors as expected.
*
* Return: void
*
* Programmer: John Mainzer
* 8/3/07
*
*-------------------------------------------------------------------------
*/
static unsigned
check_check_evictions_enabled_err(unsigned paged)
{
herr_t result;
hbool_t evictions_enabled;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
if (paged)
TESTING("get/set evictions enabled errors (paged aggregation)");
else
TESTING("get/set evictions enabled errors");
pass = TRUE;
/* allocate a cache.
*
* Call H5C_get_evictions_enabled(), passing it a NULL cache_ptr,
* should fail.
*
* Repeat with a NULL evictions_enabled_ptr, should fail as well.
*
* Configure the cache to use auto cache resize. Call
* H5C_set_evictions_enabled() to disable evictions. Should fail.
*
* Unprotect the entry and destroy the cache -- should succeed.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
result = H5C_get_evictions_enabled(NULL, &evictions_enabled);
if (result == SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_evictions_enabled succeeded() 1.\n";
}
}
if (pass) {
result = H5C_get_evictions_enabled(cache_ptr, NULL);
if (result == SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_evictions_enabled succeeded() 2.\n";
}
}
if (pass) {
result = H5C_set_evictions_enabled(cache_ptr, TRUE);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_evictions_enabled failed().\n";
}
}
if (pass) {
(cache_ptr->resize_ctl).incr_mode = H5C_incr__threshold;
result = H5C_get_evictions_enabled(cache_ptr, FALSE);
if (result == SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_evictions_enabled succeeded() 1.\n";
}
else if (cache_ptr->evictions_enabled == TRUE) {
}
(cache_ptr->resize_ctl).incr_mode = H5C_incr__off;
}
if (pass) {
(cache_ptr->resize_ctl).decr_mode = H5C_decr__threshold;
result = H5C_get_evictions_enabled(cache_ptr, FALSE);
if (result == SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_evictions_enabled succeeded() 2.\n";
}
(cache_ptr->resize_ctl).decr_mode = H5C_decr__off;
}
if (cache_ptr) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_evictions_enabled_err() */
/*-------------------------------------------------------------------------
* Function: check_auto_cache_resize()
*
* Purpose: Exercise the automatic cache resizing functionality.
* The objective is to operate the auto-resize code in
* all possible modes. Unfortunately, there are quite
* a few of them.
*
* Return: void
*
* Programmer: John Mainzer
* 10/29/04
*
*-------------------------------------------------------------------------
*/
hbool_t rpt_fcn_called = FALSE;
enum H5C_resize_status rpt_status;
static void
test_rpt_fcn(H5_ATTR_UNUSED H5C_t *cache_ptr, H5_ATTR_UNUSED int32_t version, H5_ATTR_UNUSED double hit_rate,
enum H5C_resize_status status, H5_ATTR_UNUSED size_t old_max_cache_size,
H5_ATTR_UNUSED size_t new_max_cache_size, H5_ATTR_UNUSED size_t old_min_clean_size,
H5_ATTR_UNUSED size_t new_min_clean_size)
{
rpt_fcn_called = TRUE;
rpt_status = status;
}
static unsigned
check_auto_cache_resize(hbool_t cork_ageout, unsigned paged)
{
hbool_t show_progress = FALSE;
herr_t result;
int32_t i;
int32_t checkpoint = 0;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (512 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (14 * 1024 * 1024),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 1000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.1,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
if (paged)
TESTING("automatic cache resizing (paged aggregation)");
else
TESTING("automatic cache resizing");
pass = TRUE;
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* allocate a cache, enable automatic cache resizing, and then force
* the cache through all its operational modes. Verify that all
* performs as expected.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after initialization.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache not full -- should result in not
* full status.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, PICO_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- should result in increase
* of cache size from .5 to 1 meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache not full -- should result in not
* full status.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, PICO_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 3.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full again -- should result in increase
* of cache size from 1 to 2 meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 4.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full again -- should result in increase
* of cache size from 2 to 4 meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full again -- should result in increase
* of cache size from 4 to 8 meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 6.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full again -- should result in increase
* of cache size from 8 to 12 meg. Note that max increase reduced the
* size of the increase.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (12 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (6 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 7.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full again -- should result in increase
* of cache size from 12 to 14 meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (14 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (7 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 8.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full and at maximum size -- should
* in no change in size and a result of at_max_size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (14 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (7 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 9.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate with cache full and at maximum size -- should
* result in a decrease from 14 to 13 Meg -- note that max decrease
* reduced the size of the reduction
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (13 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (6 * 1024 * 1024 + 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 10.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* the current cache configuration is inconvenient for testing cache
* size reduction, so lets change it some something easier to work
* with.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1000 * 1000 + 10;
auto_size_ctl.min_clean_fraction = 0.1;
auto_size_ctl.max_size = 8 * 1000 * 1000;
auto_size_ctl.min_size = 500 * 1000;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1000 * 1000);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1000 * 1000);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1000 * 1000 + 10)) ||
(cache_ptr->min_clean_size != (400 * 1000 + 1))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should result in a decrease from ~4 to ~3
* M -- note that max decrease reduces the size of the reduction
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (3 * 1000 * 1000 + 10)) ||
(cache_ptr->min_clean_size != (300 * 1000 + 1))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 11.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should result in a decrease from ~3
* to ~2 M -- again note that max decrease reduces the size of the
* reduction.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1000 * 1000 + 10)) ||
(cache_ptr->min_clean_size != (200 * 1000 + 1))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 12.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should result in a decrease from ~2
* to ~1 M -- again note that max decrease reduces the size of the
* reduction, but only by five bites.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (1 * 1000 * 1000 + 10)) ||
(cache_ptr->min_clean_size != (100 * 1000 + 1))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 13.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should result in a decrease from ~1
* to ~0.5 M -- max decrease is no longer a factor. New size is five
* bytes above the minimum.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (500 * 1000 + 5)) || (cache_ptr->min_clean_size != (50 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 14.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should result in a decrease of five
* bytes to the minimum cache size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (500 * 1000)) ||
(cache_ptr->min_clean_size != (50 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 15.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- Already at minimum size so no change in
* cache size and result should be at_min_size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (500 * 1000)) ||
(cache_ptr->min_clean_size != (50 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 16.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force in range hit rate -- should be no change in cache size,
* and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 900)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i + 1000);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i + 1000, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (500 * 1000)) ||
(cache_ptr->min_clean_size != (50 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 17.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- should
* increase cache size from .5 to 1 M.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (1 * 1000 * 1000)) || (cache_ptr->min_clean_size != (100 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 18.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should result in a decrease to the
* minimum cache size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (500 * 1000)) ||
(cache_ptr->min_clean_size != (50 * 1000))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 19.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/******************************************************************
* now do some tests with the maximum increase and decrease sizes
* disabled.
******************************************************************/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 4.0;
auto_size_ctl.apply_max_increment = FALSE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.25;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should result in a decrease to the
* minimum cache size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 20.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- should increase cache size
* from 1 to 4 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 21.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate again with cache full -- should increase cache
* size from 4 to 16 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (16 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (8 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 22.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should result in a decrease cache size from
* 16 to 4 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 23.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/******************************************************************
* We have tested the threshold increment and decrement modes.
* must now test the ageout decrement mode.
*
* Reconfigure the cache for this testing.
******************************************************************/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 3.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (cork_ageout)
cork_entry_type(file_ptr, MEDIUM_ENTRY_TYPE);
/* fill the cache with 1024 byte entries -- nothing should happen
* for three epochs while the markers are inserted into the cache
*
* Note that hit rate will be zero, so the cache will attempt to
* increase its size. Since we are already at max size, it will
* not be able to.
*/
if (pass) { /* first epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 24.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* second epoch */
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 25.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* third epoch */
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 26.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourth epoch -- If the hit rate were above the lower threshold,
* we would see cache size reduction now. However, nothing will
* happen until we get the hit rate above the lower threshold.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 27.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifth epoch -- force the hit rate to 100%. We should see cache size
* reduction now.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2001 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2001 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 28.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixth epoch -- force the hit rate to 100% again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1001 * 1024)) ||
(cache_ptr->min_clean_size != (int)(1001 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 29.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* seventh epoch -- force the hit rate to 100% again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(1000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 30.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eighth epoch -- force the hit rate to 100% again -- should be steady
* state.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(1000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 31.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now just bang on one entry -- after three epochs, this should
* get all entries other than the one evicted, and the cache size
* should be decreased to the minimum.
*/
if (pass) { /* ninth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(1000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 32.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* tenth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(1000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 33.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* eleventh epoch -- cache size reduction */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 34.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* twelfth epoch -- at minimum size so no more ageouts */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 35.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (cork_ageout)
uncork_entry_type(file_ptr, MEDIUM_ENTRY_TYPE);
/* repeat the above test, but with max_decrement enabled to see
* if that features works as it should. Note that this will change
* the structure of the test a bit.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 4.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fill the cache with 1024 byte entries -- nothing should happen
* for three epochs while the markers are inserted into the cache
*
* Note that hit rate will be zero, so the cache will attempt to
* increase its size. Since we are already at max size, it will
* not be able to.
*/
if (pass) { /* first epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 36.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* second epoch */
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 37.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* third epoch */
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 38.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourth epoch -- If the hit rate were above the lower threshold,
* we would see cache size reduction now. However, nothing will
* happen until we get the hit rate above the lower threshold.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 39.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifth epoch -- force the hit rate to 100%. We should see cache size
* reduction now.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (7 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (7 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 40.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixth epoch -- force the hit rate to 100% again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (6 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 41.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* seventh epoch -- keep hit rate at 100%, and keep 2K entries active.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (5 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (5 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 42.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eighth epoch -- still 100% hit rate
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 43.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* ninth epoch --hit rate at 100%.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (3 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 44.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* tenth epoch -- still 100% hit rate
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 512 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 45.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eleventh epoch -- hit rate at 100% -- starting to stableize
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 46.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* twelfth epoch -- force the hit rate to 100% again -- should be steady
* state.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 47.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now just bang on one entry -- after three epochs, this should
* get all entries other than the one evicted, and the cache size
* should be decreased to the minimum.
*/
if (pass) { /* thirteenth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 48.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* fourteenth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (1001 * 1024 + MONSTER_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1001 * 512 + MONSTER_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 49.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* fifteenth epoch -- cache size reduction */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 50.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* sixteenth epoch -- at minimum size so no more ageouts */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 51.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* repeat the test yet again, this time with empty reserve enabled.
* Again, some structural changes in the test are necessary.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fill the cache with 1024 byte entries -- nothing should happen
* for three epochs while the markers are inserted into the cache
*
* Note that hit rate will be zero, so the cache will attempt to
* increase its size. Since we are already at max size, it will
* not be able to.
*/
if (pass) { /* first epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 52.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* second epoch */
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 53.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* third epoch */
rpt_fcn_called = FALSE;
i = 2000;
while (pass && (i < 3000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 54.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourth epoch -- If the hit rate were above the lower threshold,
* we would see cache size reduction now. However, nothing will
* happen until we get the hit rate above the lower threshold.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 55.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifth epoch -- force the hit rate to 100%. We should see cache size
* reduction now.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (4002 * 1024)) ||
(cache_ptr->min_clean_size != (int)(4002 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 56.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixth epoch -- force the hit rate to 100% again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2002 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2002 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 57.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* seventh epoch -- force the hit rate to 100% again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 58.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eighth epoch -- force the hit rate to 100% again -- should be steady
* state.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 3000;
while (pass && (i < 4000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 59.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now just bang on one entry -- after three epochs, this should
* get all entries other than the one evicted, and the cache size
* should be decreased to the minimum.
*/
if (pass) { /* ninth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (int)(2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 60.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* tenth epoch */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) ||
(cache_ptr->min_clean_size != (2000 * 512))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 61.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* eleventh epoch -- cache size reduction */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 62.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* twelfth epoch -- at minimum size so no more ageouts */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 63.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Repeat the test again, this time using the age out with threshold
* mode. To simplify the testing, set epochs to eviction to 1.
*
* Again, there are some minor structural changes in the test.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
/* NOTE: upper_hr_threshold MUST be type double (not float)
* or the cache test will fail on 64-bit systems.
*/
auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 7.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 6.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fill the cache with 4K byte entries -- increment mode is off,
* so cache size reduction should kick in as soon as we get the
* hit rate above .999.
*/
if (pass) { /* first epoch -- hit rate 0 */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 64.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* second epoch -- hit rate 0 */
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 65.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* third epoch -- hit rate 1.0 -- should see decrease */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 66.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourth epoch -- load up the cache again -- hit rate 0 */
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 67.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifth epoch -- still loading up the cache -- hit rate 0 */
if (pass) {
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 68.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixth epoch -- force hit rate to .998 -- should be no reduction */
if (pass) {
rpt_fcn_called = FALSE;
i = 1002;
while (pass && (i < 2002)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 69.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* seventh epoch -- force hit rate to .999 -- should see reduction
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 1003;
while (pass && (i < 2003)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (1000 * MEDIUM_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != (1000 * MEDIUM_ENTRY_SIZE / 2))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 70.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* We have now tested all the major ageout modes individually.
* Lets try them all together to look for unexpected interactions
* and/or bugs.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1000 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1000 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1000 * 1024);
auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 8.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 7.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fill the cache with 4K byte entries -- increment mode is threshold,
* so the decrease code will not be executed until the hit rate exceeds
* .75.
*/
if (pass) { /* first epoch -- hit rate 0 */
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 71.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) { /* second epoch -- hit rate 0 */
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 72.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* third epoch -- force the hit rate to 1.0. Should be no change
* in the cache size due to the combination of the empty reserve
* and the max decrease. Max decrease will limit the evictions
* in any one epoch, and the empty reserve will not permit cache
* size reduction unless the specified empty reserve is maintained.
*
* In this epoch, all we should see is a reduction in the index size.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (7 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 73.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourth epoch -- hit rate still 1.0. Index size should decrease,
* but otherwise no change expected.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (6 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 74.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifth epoch -- hit rate still 1.0. Index size should decrease,
* but otherwise no change expected.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (5 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 75.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixth epoch -- hit rate still 1.0. Index size should decrease,
* but otherwise no change expected. Note that the cache size is
* now just on the edge of meeting the clean reserve.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 76.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* seventh epoch -- hit rate still 1.0. No change in index size expected.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, LARGE_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 77.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eighth epoch -- start loading 1 KB entries. Hit rate 0 so
* decrease code shouldn't be called.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != at_max_size) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (5 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 78.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* ninth epoch -- access the 1 KB entries again, driving the hit rate
* to 1.0. Decrease code should be triggered, but the max decrease
* should prevent the empty reserve from being met in this epoch.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1000 * 1024)) ||
(cache_ptr->index_size != (4 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 79.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* tenth epoch -- access the 1 KB entries yet again, forcing hit rate
* to 1.0. Decrease code should be triggered, and the empty reserve
* should finally be met.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (7 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (7 * 1000 * 1024 / 2)) ||
(cache_ptr->index_size != (3 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 80.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* eleventh epoch -- access the 1 KB entries yet again, forcing hit rate
* to 1.0. Decrease code should be triggered, and the empty reserve
* should be met again.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (6 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1000 * 1024)) ||
(cache_ptr->index_size != (2 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 81.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* twelfth epoch -- hit rate 1.0 -- decrease as before.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (5 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (5 * 1000 * 1024 / 2)) ||
(cache_ptr->index_size != (1 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 82.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* thirteenth epoch -- hit rate 1.0 -- decrease as before.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (4 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1000 * 1024)) ||
(cache_ptr->index_size != (1 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 83.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fourteenth epoch -- hit rate 1.0 -- decrease as before.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (3 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1000 * 1024 / 2)) ||
(cache_ptr->index_size != (1 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 84.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* fifteenth epoch -- hit rate 1.0 -- decrease as before.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1000 * 1024)) ||
(cache_ptr->index_size != (1 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 85.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* sixteenth epoch -- hit rate 1.0 -- should be stable now
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (2 * 1000 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1000 * 1024)) ||
(cache_ptr->index_size != (1 * 1000 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 86.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now test the flash cache size increment code. At least at present,
* there should be no interaction between the regular auto-resize
* code and the flash cache size increment code other than a reset
* of the counter and stats collection used by the regular auto-resize
* code. Thus we do only limited tests of the two pieces of code
* operating together.
*
* Start with simple test to verify that the flash cache increment
* code increases the cache size when and as expected.
*/
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Place the cache in a known state via a flush-destroy on the cache
* to clear out all entries, and then a reset on all the entries.
* Then configure the cache for the flash cache size increase tests,
* and force the flash size increase code through all its operational
* modes. Verify that all perform as expected.
*/
if (pass) {
flush_cache(file_ptr, TRUE, FALSE, FALSE);
reset_entries();
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now repeat the above tests using the add space flash cache size
* increment algorithm.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 64 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 1024 * 1024;
auto_size_ctl.min_size = 5 * 1024;
auto_size_ctl.epoch_length = 100;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (32 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
auto_size_ctl.flash_multiple = 1.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1000 * 1024);
auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 12.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) ||
(cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache config (0).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load a huge entry into the cache */
if (pass) {
protect_entry(file_ptr, HUGE_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) ||
(cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) ||
(cache_ptr->index_size != HUGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (1).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now load a monster entry. Since a monster entry is larger than
* half the size of the cache, and there is not sufficient space
* for a monster entry in the cache, we will add space to the
* cache to make room for the entry.
*/
if (pass) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (80 * 1024)) ||
(cache_ptr->min_clean_size != (40 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != (HUGE_ENTRY_SIZE + MONSTER_ENTRY_SIZE)) ||
(cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (2).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load a second monster entry. Since the monster entry is larger
* than half the size of the cache yet again, and there is not
* sufficient space for the monster entry in the cache, we again
* add space to the cache to make space for the entry.
*/
if (pass) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) ||
(cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 3) ||
(cache_ptr->index_size != ((2 * MONSTER_ENTRY_SIZE) + HUGE_ENTRY_SIZE)) ||
(cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (3).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load a third moster entry. Should be no cache size increase this
* time.
*/
if (pass) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET);
if (pass &&
(((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) ||
(cache_ptr->index_len != 2) || (cache_ptr->index_size != (2 * MONSTER_ENTRY_SIZE)) ||
(cache_ptr->cache_accesses != 2)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (4).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* delete existing entries to prepare for next test, and reset
* the size of the cache.
*/
if (pass) {
expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 1);
expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 2);
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n";
}
}
if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) ||
(cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 0) ||
(cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (5).\n";
}
}
/* repeat the above basic test, only this time, use inserts to add
* entries to the cache, not protects.
*/
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* insert a huge entry into the cache */
if (pass) {
insert_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET);
/* protect and unprotect a couple times to increment cache_accesses */
protect_entry(file_ptr, HUGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, HUGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) ||
(cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) ||
(cache_ptr->index_size != HUGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 2)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (6).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now insert a monster entry. Since a monster entry is larger than
* half the size of the cache, and there is not sufficient space
* for a monster entry in the cache, we will add space to the
* cache to make room for the entry.
*/
if (pass) {
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 4, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (80 * 1024)) ||
(cache_ptr->min_clean_size != (40 * 1024)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != HUGE_ENTRY_SIZE + MONSTER_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (7).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Insert a second monster entry. Cache size should increase again.
*/
if (pass) {
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 5, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) ||
(cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 3) ||
(cache_ptr->index_size != 2 * MONSTER_ENTRY_SIZE + HUGE_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (8).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Insert a third monster entry. Should be no cache size increase this
* time.
*/
if (pass) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 6);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 6, H5C__NO_FLAGS_SET);
if (pass &&
(((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) ||
(cache_ptr->index_len != 2) || (cache_ptr->index_size != (2 * MONSTER_ENTRY_SIZE)) ||
(cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (9).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* delete existing entries to prepare for next test, and reset
* the size of the cache. We must also change the size of the needed
* variable entries before we run the test, so will protect and
* unprotect them now so as to get the correct initial size.
*/
if (pass) {
expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 5);
expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 6);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 1024, TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 1024, TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 1024, TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, 1024, TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, H5C__DIRTIED_FLAG);
flush_cache(file_ptr, TRUE, FALSE, FALSE);
if (pass) {
auto_size_ctl.initial_size = 6 * 1024;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n";
}
}
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 0) ||
(cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (10).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now load the variable entries into the cache */
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 4)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (11).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect a variable entry, and re-size it to 3K. Should be
* no effect on the size of the cache.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (3 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG);
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 6 * 1024) || (cache_ptr->cache_accesses != 5)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (12).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect the variable entry again, and re-size it to 10K. Should
* resize the cache to 13 KB. Note that cache_accesses will be 0
* in this case, since cache_accesses is incremented on the protect.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (10 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG);
if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) ||
(cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (13).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect a second variable entry, and re-size it to 10K. Should
* resize to 22 KB.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (10 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (14).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect a third variable entry, and re-size it to 10K. Should
* be no change in cache size.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (10 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (15).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* re-size the variable entries back down to their initial size, and
* restore the cache to its initial size as well, in preparation
* for the next test.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG);
if (pass) {
auto_size_ctl.initial_size = 6 * 1024;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 14.\n";
}
}
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (16).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now test flash cache resizes with pinned entries...
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 2 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (6 * 512)) ||
(cache_ptr->index_len != 4) || (cache_ptr->index_size != 5 * 1024) ||
(cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (17).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) ||
(cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (18).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (19).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (20).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Unpin the entries. Note that no entries are evicted as we don't
* load any entries.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__UNPIN_ENTRY_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__UNPIN_ENTRY_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__UNPIN_ENTRY_FLAG);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 4)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (21).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* re-size the variable entries back down to their initial size, and
* restore the cache to its initial size as well, in preparation
* for the next test.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (1 * 1024), TRUE);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG);
if (pass) {
auto_size_ctl.initial_size = 6 * 1024;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n";
}
}
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (22).\n";
}
}
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 2 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (6 * 512)) ||
(cache_ptr->index_len != 4) || (cache_ptr->index_size != 5 * 1024) ||
(cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (23).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) ||
(cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (24).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (25).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__PIN_ENTRY_FLAG);
resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 10 * 1024, TRUE);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (26).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Unpin the entries. Note that no entries are evicted as we don't
* load any entries.
*/
if (pass) {
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__UNPIN_ENTRY_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__UNPIN_ENTRY_FLAG);
protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__UNPIN_ENTRY_FLAG);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) ||
(cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 4)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (27).\n";
}
}
/* We have finished a basic check of the flash cache size increment
* code. Tidy up for a more extensive test...
*/
if (pass) {
expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10);
expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11);
expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12);
expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13);
if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) ||
(cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 0) ||
(cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 4)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (28).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* ...and then reconfigure. Note that we change the flash_multiple
* and flash_threshold just to make sure that such changed perform
* as expected.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 20 * 1024;
auto_size_ctl.min_size = 4 * 1024;
auto_size_ctl.epoch_length = 100;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.4;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (2 * 1024);
auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024)) || (cache_ptr->min_clean_size != (4 * 512)) ||
(cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)) {
pass = FALSE;
failure_mssg = "bad cache after initialization 15.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect and unprotect a large entry -- no change in cache size since
* a large entry will just fill the available space in the cache.
*/
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (4 * 1024)) || (cache_ptr->min_clean_size != (4 * 512)) ||
(cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 1) || (rpt_fcn_called == TRUE)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (29).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect and unprotect another a large entry -- should trigger a
* flash cache size increase to 12 KB (remember that flash_multiple is
* set to 2.0).
*/
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET);
if (pass &&
(((cache_ptr->max_cache_size != (12 * 1024)) || (cache_ptr->min_clean_size != (12 * 512)) ||
(cache_ptr->index_len != 2) || (cache_ptr->index_size != 2 * LARGE_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 1) || (rpt_fcn_called != TRUE)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (30).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* protect and unprotect two more large entries -- shouldn't trigger a
* flash cache size increase.
*/
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET);
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__NO_FLAGS_SET);
if (pass &&
(((cache_ptr->max_cache_size != (12 * 1024)) || (cache_ptr->min_clean_size != (12 * 512)) ||
(cache_ptr->index_len != 3) || (cache_ptr->index_size != 3 * LARGE_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 3) || (rpt_fcn_called != FALSE)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (31).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* do many accesses of a single entry to talk the cache into reducing
* its size to the minimum.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, TINY_ENTRY_TYPE, 0);
if (pass)
unprotect_entry(file_ptr, TINY_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->max_cache_size != (4 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024)) || (cache_ptr->index_size != (1 * TINY_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (32).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Force another flash increase */
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (4 * 1024 + 128)) ||
(cache_ptr->min_clean_size != (2 * 1024 + 64)) || (cache_ptr->index_len != 2) ||
(cache_ptr->index_size != LARGE_ENTRY_SIZE + TINY_ENTRY_SIZE) ||
(cache_ptr->cache_accesses != 1) || (rpt_fcn_called == FALSE) ||
(rpt_status != flash_increase)))) {
pass = FALSE;
failure_mssg = "Unexpected cache config (33).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force regular size increase up to maximum */
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 500)) {
protect_entry(file_ptr, TINY_ENTRY_TYPE, i);
if (pass)
unprotect_entry(file_ptr, TINY_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
i++;
}
if ((cache_ptr->max_cache_size != (20 * 1024)) || (cache_ptr->min_clean_size != (10 * 1024)) ||
(rpt_fcn_called == FALSE) || (rpt_status != at_max_size)) {
pass = FALSE;
failure_mssg = "Unexpected cache config (34).\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
PASSED();
} /* end if */
else {
H5_FAILED();
} /* end else */
if (!pass)
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
return (unsigned)!pass;
} /* check_auto_cache_resize() */
/*-------------------------------------------------------------------------
* Function: check_auto_cache_resize_disable()
*
* Purpose: Test the various ways in which the resize code can
* be disabled. Unfortunately, there are quite a few of them.
*
* Return: void
*
* Programmer: John Mainzer
* 12/16/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_auto_cache_resize_disable(unsigned paged)
{
hbool_t show_progress = FALSE;
herr_t result;
int32_t i;
int32_t checkpoint = 0;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (512 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (14 * 1024 * 1024),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 1000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 1.0,
/* double flash_threshold = */ 0.25,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.1,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
if (paged)
TESTING("automatic cache resize disable (paged aggregation)");
else
TESTING("automatic cache resize disable");
pass = TRUE;
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* allocate a cache, enable automatic cache resizing, and then force
* the cache through all its operational modes. Verify that all
* performs as expected.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "file_ptr NULL from setup_cache.";
}
else {
cache_ptr = file_ptr->shared->cache;
}
}
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after initialization.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/******************************************************************
* So far, we have forced the auto cache resize through all modes
* other than increase_disabled and decrease_disabled. Force these
* modes now. Note that there are several ways we can reach these
* modes.
******************************************************************/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 1.0; /* disable size increases */
auto_size_ctl.apply_max_increment = FALSE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- increase disabled so should
* be no change in cache size, and result should be increase_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != increase_disabled) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- make sure that we haven't disabled decreases.
* should result in a decrease cache size from 4 to 2 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate again -- increase disabled so should
* be no change in cache size, and result should be increase_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != increase_disabled) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 3.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Repeat the above tests, disabling increase through the lower
* threshold instead of the increment.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increases */
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = FALSE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- increase disabled so should
* be no change in cache size, and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 4.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- make sure that we haven't disabled decreases.
* should result in a decrease cache size from 4 to 2 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate again -- increase disabled so should
* be no change in cache size, and result should be increase_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 6.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Repeat the above tests yet again, disabling increase through the
* incr_mode.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = FALSE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 3.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate with cache full -- increase disabled so should
* be no change in cache size, and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 7.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- make sure that we haven't disabled decreases.
* should result in a decrease cache size from 4 to 2 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 8.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate again -- increase disabled so should
* be no change in cache size, and result should be increase_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 9.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now, disable size decreases, and repeat the above tests.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 1.0; /* disable size decreases */
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 4.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no change in cache size,
* and result should be decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 10.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 11.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should be no change in cache size,
* and result should be decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 12.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Repeat the above tests, disabling decrease through the upper
* threshold instead of the decrement.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decreases */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no change in cache size,
* and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 13.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 14.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should be no change in cache size,
* and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 15.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Repeat the above tests, disabling decrease through the decr_mode.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__off;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 7.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 6.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no change in cache size,
* and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 16.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 17.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate again -- should be no change in cache size,
* and result should be in_spec.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 18.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now do tests disabling size decrement in age out mode.
*
* Start by disabling size decrement by setting max_decrement to zero.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = 0; /* disable decrement */
auto_size_ctl.epochs_before_eviction = 1;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 8.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 7.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
/* flush the cache and destroy all entries so we start from a known point */
flush_cache(file_ptr, TRUE, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* load up the cache with small entries. Note that it will take an
* epoch for the ageout code to initialize itself if it is enabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 19.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load up some more small entries.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 20.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now force a high hit rate so that the size increase code is
* is satisfied. We would see a decrease here if decrease were
* possible.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 21.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 22.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* just bang on a single entry. This will see to it that there are
* many entries that could be aged out were decreases enabled.
* Should be no change in cache size, and result should be
* decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 23.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now disable size decrement in age out mode via the empty reserve.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 1;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 1.0; /* disable decrement */
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 9.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 8.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
/* flush the cache and destroy all entries so we start from a known point */
flush_cache(file_ptr, TRUE, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* load up the cache with small entries. Note that it will take an
* epoch for the ageout code to initialize itself if it is enabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 24.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load up some more small entries.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 25.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now force a high hit rate so that the size increase code is
* is satisfied. We would see a decrease here if decrease were
* possible.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 26.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 27.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* just bang on a single entry. This will see to it that there are
* many entries that could be aged out were decreases enabled.
* Should be no change in cache size, and result should be
* decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 28.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now work with age out with threshold. One can argue that we should
* repeat the above age out tests with age out with threshold, but the
* same code is executed in both cases so I don't see the point. If
* that ever changes, this test should be updated.
*
* There is only one way of disabling decrements that is peculiar
* to age out with threshold, which is to set the upper threshold
* to 1.0. Test this now.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 1.0;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 1;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 10.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 9.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
/* flush the cache and destroy all entries so we start from a known point */
flush_cache(file_ptr, TRUE, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* load up the cache with small entries. Note that it will take an
* epoch for the ageout code to initialize itself if it is enabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 29.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Load up some more small entries.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 1000;
while (pass && (i < 2000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 30.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now force a high hit rate so that the size increase code is
* is satisfied. We would see a decrease here if decrease were
* possible, but the upper threshold cannot be met, so no decrease.
*
* rpt_status should be decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024)) || (cache_ptr->index_len != 2000) ||
(cache_ptr->index_size != 2000 * SMALL_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 31.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- cache size should increase from 4 to 6 Meg.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != increase) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 32.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* just bang on a single entry. This keeps the hit rate high, and sees
* to it that there are many entries that could be aged out were
* decreases enabled.
*
* Should be no change in cache size, and result should be
* decrease_disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 999);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 999, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) ||
(cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 33.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/*********************************************************************
* Finally, use the auto cache resize code to set the size of the
* cache and keep it there. Again, due to the complexity of the
* interface, there are lots of ways of doing this. We have to
* check them all.
*********************************************************************/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 2 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increases */
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decreases */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 11.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 10.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 34.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 35.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.25;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 1.0; /* disable size increment */
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 1.0; /* disable size decrement */
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 12.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 11.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 36.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 37.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = FALSE;
auto_size_ctl.initial_size = 2 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 6 * 1024 * 1024; /* no resize */
auto_size_ctl.min_size = 6 * 1024 * 1024; /* no resize */
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 12.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 38.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (3 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 39.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.25;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 1.0; /* disable size increment */
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decrement */
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 14.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 13.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 40.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 41.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increment */
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 1.0; /* disable size decrement */
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 14.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 42.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 43.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 4 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 16 * 1024 * 1024;
auto_size_ctl.min_size = 1 * 1024 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__off;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 16.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 15.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force low hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 44.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* force high hit rate -- should be no response as the auto-resize
* code should be disabled.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) ||
(cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (2 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 45.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now test the flash cache size increment code to verify that it
* is disabled when it should be.
*
* Since the flash size increase code doesn't look at hit rate, or
* use epochs (other than to start a new epoch if a flash cache size
* increase is triggered), we go about these tests somewhat differently
* than the rest of the tests in this function.
*
* As of this writing, there is only one flash cache size increment
* mode (add space), which is triggered whenever the size of a newly
* loaded or inserted entry, or the delta between old and new entry
* sizes exceeds some fraction of the current maximum cache size, and
* the cache doesn't have enough free space to accommodate the new/
* resize entry without performing evictions. The range of permissible
* values for the flash_threshold (0.1 to 1.0 as of this writing), and
* for the flash_multiple (0.1 to 10.0) do not permit the facility to
* be turned off by configuration. Thus, flash cache size increases
* can be disabled only via the flash_incr_mode, and by setting the
* current max_cache_size equal to max_size.
*
* We have already tested the latter in check_auto_cache_resize(), so
* we need only test the former here. Do this by disabling flash
* cache size increments via the flash_incr_mode, and then creating
* situations that would trigger flash cache size increases were that
* code enabled.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 64 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 256 * 1024;
auto_size_ctl.min_size = 32 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__threshold;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (2 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 1.0;
auto_size_ctl.flash_threshold = 0.25;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = TRUE;
auto_size_ctl.max_decrement = (1 * 1024);
auto_size_ctl.epochs_before_eviction = 3;
auto_size_ctl.apply_empty_reserve = TRUE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 17.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 16.\n";
}
}
/* We have reduced the max cache size to well below the current index
* size. Protect and unprotect an entry to allow the cache to evict
* entries and get within bounds
*/
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) ||
(cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) ||
(cache_ptr->index_size != LARGE_ENTRY_SIZE) || (rpt_fcn_called != FALSE)))) {
HDfprintf(stdout, "\nmax_cache_size = %ld.\n", (long)(cache_ptr->max_cache_size));
HDfprintf(stdout, "min_clean_size = %ld.\n", (long)(cache_ptr->min_clean_size));
HDfprintf(stdout, "index_len = %ld.\n", (long)(cache_ptr->index_len));
HDfprintf(stdout, "index_size = %ld.\n", (long)(cache_ptr->index_size));
HDfprintf(stdout, "rpt_fcn_called = %ld.\n", (long)(rpt_fcn_called));
pass = FALSE;
failure_mssg = "Unexpected cache size change results 46.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now protect and unprotect a monster entry. If the flash cache
* size increment code was active, this would trigger an increase.
* Verify that it doesn't.
*
* This finishes the additional tests needed for the flash cache
* size increase code.
*/
if (pass) {
rpt_fcn_called = FALSE;
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) ||
(cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) ||
(cache_ptr->index_size != MONSTER_ENTRY_SIZE) || (rpt_fcn_called != FALSE)))) {
HDfprintf(stdout, "\nmax_cache_size = %ld.\n", (long)(cache_ptr->max_cache_size));
HDfprintf(stdout, "min_clean_size = %ld.\n", (long)(cache_ptr->min_clean_size));
HDfprintf(stdout, "index_len = %ld.\n", (long)(cache_ptr->index_len));
HDfprintf(stdout, "index_size = %ld.\n", (long)(cache_ptr->index_size));
HDfprintf(stdout, "rpt_fcn_called = %ld.\n", (long)(rpt_fcn_called));
pass = FALSE;
failure_mssg = "Unexpected cache size change results 47.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_auto_cache_resize_disable() */
/*-------------------------------------------------------------------------
* Function: check_auto_cache_resize_epoch_markers()
*
* Purpose: Verify that the auto-resize code manages epoch markers
* correctly.
*
* Return: void
*
* Programmer: John Mainzer
* 12/16/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_auto_cache_resize_epoch_markers(unsigned paged)
{
hbool_t show_progress = FALSE;
herr_t result;
int32_t i;
int32_t j;
int32_t checkpoint = 0;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (512 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (14 * 1024 * 1024),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 1000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.1,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
if (paged)
TESTING("automatic cache resize epoch marker management (paged aggr)");
else
TESTING("automatic cache resize epoch marker management");
pass = TRUE;
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after initialization.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Now make sure that we are managing the epoch markers correctly.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 10;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Since we just created the cache, there should be no epoch markers
* active. Verify that this is true.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 0) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 1.\n";
}
}
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) ||
(cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024)) ||
(cache_ptr->index_size != (1 * 1000 * MEDIUM_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 0.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
j = 2;
while (pass && (j <= 10)) {
rpt_fcn_called = FALSE;
i = (j - 2) * 1000;
while (pass && (i < (j - 1) * 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->epoch_markers_active != j)) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 2.\n";
}
j++;
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* we now have a full complement of epoch markers -- see if
* we get the expected reduction.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 9000;
while (pass && (i < 10000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) ||
(cache_ptr->max_cache_size != (10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) ||
(cache_ptr->min_clean_size != ((10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE) / 2)) ||
(cache_ptr->index_size != (10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 1.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* now reduce the epochs before eviction, and see if the cache
* deletes the extra markers
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 1;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* There should be exactly one active epoch marker at present.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 1) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 3.\n";
}
}
/* Now do an epochs worth of accesses, and verify that everything
* not accessed in this epoch gets evicted, and the cache size
* is reduced.
*/
if (pass) {
rpt_fcn_called = FALSE;
i = 9000;
while (pass && (i < 10000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) ||
(cache_ptr->min_clean_size != (256 * 1024)) ||
(cache_ptr->index_size != (1 * 1000 * SMALL_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 2.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* There should be exactly one active epoch marker at present...
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 1) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 4.\n";
}
}
/* shift the decrement mode to threshold, and verify that we remove
* all epoch markers.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 1;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after set resize re-config 3.\n";
}
}
/* ... and now there should be none.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 0) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 5.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* shift the decrement mode to age out with threshold. Set epochs
* before eviction to 10 again.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 10;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n";
}
}
/* Verify that there are no active epoch markers.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 0) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 6.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* build up a full set of epoch markers. */
if (pass) {
j = 1;
while (pass && (j <= 10)) {
rpt_fcn_called = FALSE;
i = (j - 1) * 1000;
while (pass && (i < j * 1000)) {
protect_entry(file_ptr, SMALL_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->epoch_markers_active != j)) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 7.\n";
}
j++;
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* Verify that there are now 10 active epoch markers.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 10) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 8.\n";
}
}
/* shift the decrement mode to off. This should cause all epoch
* markers to be removed.
*/
if (pass) {
auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
auto_size_ctl.rpt_fcn = test_rpt_fcn;
auto_size_ctl.set_initial_size = TRUE;
auto_size_ctl.initial_size = 8 * 1024 * 1024;
auto_size_ctl.min_clean_fraction = 0.5;
auto_size_ctl.max_size = 8 * 1024 * 1024;
auto_size_ctl.min_size = 512 * 1024;
auto_size_ctl.epoch_length = 1000;
auto_size_ctl.incr_mode = H5C_incr__off;
auto_size_ctl.lower_hr_threshold = 0.75;
auto_size_ctl.increment = 2.0;
auto_size_ctl.apply_max_increment = TRUE;
auto_size_ctl.max_increment = (4 * 1024 * 1024);
auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
auto_size_ctl.flash_multiple = 2.0;
auto_size_ctl.flash_threshold = 0.5;
auto_size_ctl.decr_mode = H5C_decr__off;
auto_size_ctl.upper_hr_threshold = 0.995;
auto_size_ctl.decrement = 0.5;
auto_size_ctl.apply_max_decrement = FALSE;
auto_size_ctl.max_decrement = (1 * 1024 * 1024);
auto_size_ctl.epochs_before_eviction = 10;
auto_size_ctl.apply_empty_reserve = FALSE;
auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n";
}
}
/* Verify that there are now no active epoch markers.
*/
if (pass) {
if (cache_ptr->epoch_markers_active != 0) {
pass = FALSE;
failure_mssg = "Unexpected # of epoch markers 9.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
/* verify that we still have the expected number of entries in the cache,
* and that the cache is of the expected size.
*/
if (pass) {
if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (4 * 1024 * 1024)) ||
(cache_ptr->index_size != (10 * 1000 * SMALL_ENTRY_SIZE)) || (cache_ptr->index_len != 10000)) {
pass = FALSE;
failure_mssg = "Unexpected cache size change results 3.\n";
}
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (show_progress)
HDfprintf(stderr, "check point %d\n", checkpoint++);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_auto_cache_resize_epoch_markers() */
/*-------------------------------------------------------------------------
* Function: check_auto_cache_resize_input_errs()
*
* Purpose: Verify that H5C_set_cache_auto_resize_config() detects
* and rejects invalid input.
*
* Return: void
*
* Programmer: John Mainzer
* 10/29/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_auto_cache_resize_input_errs(unsigned paged)
{
herr_t result;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_auto_size_ctl_t ref_auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (512 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (16 * 1024 * 1024),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 1000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.1,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
H5C_auto_size_ctl_t invalid_auto_size_ctl;
H5C_auto_size_ctl_t test_auto_size_ctl;
if (paged)
TESTING("automatic cache resize input errors (paged aggregation)");
else
TESTING("automatic cache resize input errors");
pass = TRUE;
/* allocate a cache, and set a reference automatic cache control
* configuration. Then feed H5C_set_cache_auto_resize_config()
* invalid input, and verify that the correct error is returned,
* and that the configuration is not modified.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &ref_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after initialization.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 1.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 1.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.7;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(NULL, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted NULL cache_ptr.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 2.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 2.";
}
}
/* check bad version rejection. */
if (pass) {
invalid_auto_size_ctl.version = -1; /* INVALID */
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.7;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad version.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 3.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 3.";
}
}
/* check bad initial size rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 16 * 1024 * 1024 + 1;
/* INVALID */
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad init size 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 4.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 4.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 1 * 1024 * 1024 - 1;
/* INVALID */
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad init size 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 5.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 5.";
}
}
/* test for invalid min clean fraction rejection. */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 1.00001; /* INVALID */
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min clean frac 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 6.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 6.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = -0.00001; /* INVALID */
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min clean frac 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 7.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 7.";
}
}
/* test for invalid max_size and/or min_size rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = H5C__MAX_MAX_CACHE_SIZE + 1;
/* INVALID */
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad max_size.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 8.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 8.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 1 * 1024 * 1024; /* INVALID */
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024 + 1; /*PAIR */
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad size pair.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 9.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 9.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = H5C__MIN_MAX_CACHE_SIZE - 1;
/* INVALID */
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min_size.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 10.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 10.";
}
}
/* test for invalid epoch_length rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = H5C__MAX_AR_EPOCH_LENGTH + 1;
/* INVALID */
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epoch len 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 11.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 11.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = H5C__MIN_AR_EPOCH_LENGTH - 1;
/* INVALID */
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epoch len 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 12.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 12.";
}
}
/* test for bad incr_mode rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = (enum H5C_cache_incr_mode) - 1; /* INVALID */
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad incr_mode 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 13.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 13.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = (enum H5C_cache_incr_mode)2; /* INVALID */
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad incr_mode 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 14.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 14.";
}
}
/* check for bad upper and/or lower threshold rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.7;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 1.01; /* INVALID */
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad upper threshold.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 15.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 15.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.8; /* INVALID */
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.7; /* INVALID */
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad threshold pair.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 16.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 16.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.5;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = -0.0001; /* INVALID */
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad lower threshold.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 17.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 17.";
}
}
/* test for bad increment rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 0.99999; /* INVALID */
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.5;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad increment.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 18.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 18.";
}
}
/* test for bad flash_incr_mode rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = (enum H5C_cache_flash_incr_mode) - 1; /* INVALID */
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_incr_mode.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 19.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 19.";
}
}
/* test for bad flash_multiple rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
invalid_auto_size_ctl.flash_multiple = 0.09; /* INVALID */
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_multiple(1).\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 20.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 20.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
invalid_auto_size_ctl.flash_multiple = 10.01; /* INVALID */
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_multiple(2).\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 21.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 21.";
}
}
/* test for bad flash_threshold rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
invalid_auto_size_ctl.flash_multiple = 1.0;
invalid_auto_size_ctl.flash_threshold = 0.09; /* INVALID */
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_threshold(1).\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 22.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 22.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space;
invalid_auto_size_ctl.flash_multiple = 1.0;
invalid_auto_size_ctl.flash_threshold = 1.001; /* INVALID */
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_threshold(2).\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 23.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 23.";
}
}
/* test for bad decr_mode rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = (enum H5C_cache_decr_mode) - 1; /* INVALID */
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decr_mode 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 24.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 24.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = (enum H5C_cache_decr_mode)4; /* INVALID */
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decr_mode 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 25.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 25.";
}
}
/* check for bad decrement rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 1.000001; /* INVALID */
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decrement 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 26.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 26.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = -0.000001; /* INVALID */
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decrement 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 27.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 27.";
}
}
/* check for rejection of bad epochs_before_eviction */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__age_out;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 0; /* INVALID */
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epochs_before_eviction 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 28.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 28.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = H5C__MAX_EPOCH_MARKERS + 1; /* INVALID */
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epochs_before_eviction 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 29.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 29.";
}
}
/* Check for bad apply_empty_reserve rejection */
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__age_out;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = 3;
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = -0.0000001; /* INVALID */
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad empty_reserve 1.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 30.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 30.";
}
}
if (pass) {
invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
invalid_auto_size_ctl.rpt_fcn = NULL;
invalid_auto_size_ctl.set_initial_size = TRUE;
invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024;
invalid_auto_size_ctl.min_clean_fraction = 0.1;
invalid_auto_size_ctl.max_size = 16 * 1024 * 1024;
invalid_auto_size_ctl.min_size = 1 * 1024 * 1024;
invalid_auto_size_ctl.epoch_length = 5000;
invalid_auto_size_ctl.incr_mode = H5C_incr__threshold;
invalid_auto_size_ctl.lower_hr_threshold = 0.75;
invalid_auto_size_ctl.increment = 2.0;
invalid_auto_size_ctl.apply_max_increment = TRUE;
invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024);
invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off;
invalid_auto_size_ctl.flash_multiple = 2.0;
invalid_auto_size_ctl.flash_threshold = 0.5;
invalid_auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold;
invalid_auto_size_ctl.upper_hr_threshold = 0.999;
invalid_auto_size_ctl.decrement = 0.9;
invalid_auto_size_ctl.apply_max_decrement = TRUE;
invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024);
invalid_auto_size_ctl.epochs_before_eviction = H5C__MAX_EPOCH_MARKERS + 1; /* INVALID */
invalid_auto_size_ctl.apply_empty_reserve = TRUE;
invalid_auto_size_ctl.empty_reserve = 0.05;
result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config accepted bad empty_reserve 2.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed 31.";
}
else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) {
pass = FALSE;
failure_mssg = "Unexpected auto resize config 31.";
}
}
/* finally, before we finish, try feeding
* H5C_get_cache_auto_resize_config invalid data.
*/
if (pass) {
result = H5C_get_cache_auto_resize_config(NULL, &test_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config accepted NULL cache_ptr.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config((const H5C_t *)&test_auto_size_ctl, &test_auto_size_ctl);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config accepted bad cache_ptr.\n";
}
}
if (pass) {
result = H5C_get_cache_auto_resize_config(cache_ptr, NULL);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config accepted NULL config ptr.\n";
}
}
if (cache_ptr) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_auto_cache_resize_input_errs() */
/*-------------------------------------------------------------------------
* Function: check_auto_cache_resize_aux_fcns()
*
* Purpose: Verify that the auxiliary functions associated with
* the automatic cache resize capability are operating
* correctly. These functions are:
*
* H5C_get_cache_size()
* H5C_get_cache_hit_rate()
* H5C_reset_cache_hit_rate_stats()
*
* Return: void
*
* Programmer: John Mainzer
* 11/4/04
*
*-------------------------------------------------------------------------
*/
static unsigned
check_auto_cache_resize_aux_fcns(unsigned paged)
{
herr_t result;
int32_t i;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
double hit_rate;
size_t max_size;
size_t min_clean_size;
size_t cur_size;
uint32_t cur_num_entries;
H5C_auto_size_ctl_t auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ NULL,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (1 * 1024 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (16 * 1024 * 1025),
/* size_t min_size = */ (512 * 1024),
/* int64_t epoch_length = */ 50000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__off,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__off,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.9,
/* hbool_t apply_max_decrement = */ TRUE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 3,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.5};
if (paged)
TESTING("automatic cache resize auxiliary functions (paged aggregation)");
else
TESTING("automatic cache resize auxiliary functions");
pass = TRUE;
/* allocate a cache, and then test the various auxiliary functions.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
}
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
if ((cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) {
pass = FALSE;
failure_mssg = "bad cache size after initialization.\n";
}
}
/* lets start with the H5C_get_cache_hit_rate(),
* H5C_reset_cache_hit_rate_stats() pair.
*/
if (pass) {
if ((H5C_get_cache_hit_rate(NULL, &hit_rate) != FAIL) ||
(H5C_get_cache_hit_rate(cache_ptr, NULL) != FAIL)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate accepts bad params.\n";
}
}
if (pass) {
result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate failed.\n";
}
else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.0)) { /* i.e. hit_rate != 0.0 */
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 1.\n";
}
}
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, PICO_ENTRY_TYPE, i);
if (pass) {
unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
i++;
}
}
if (pass) {
result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate failed.\n";
}
else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.0)) { /* i.e. hit_rate != 0.0 */
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 2.\n";
}
else if ((cache_ptr->cache_accesses != 1000) || (cache_ptr->cache_hits != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache hit rate stats.\n";
}
else if (rpt_fcn_called) {
pass = FALSE;
failure_mssg = "Report function called?.\n";
}
}
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, PICO_ENTRY_TYPE, 0);
if (pass) {
unprotect_entry(file_ptr, PICO_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
i++;
}
}
if (pass) {
result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate failed.\n";
}
else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.5)) { /* i.e. hit_rate != 0.5 */
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 3.\n";
}
else if ((cache_ptr->cache_accesses != 2000) || (cache_ptr->cache_hits != 1000)) {
pass = FALSE;
failure_mssg = "Unexpected cache hit rate stats.\n";
}
else if (rpt_fcn_called) {
pass = FALSE;
failure_mssg = "Report function called?.\n";
}
}
if (pass) {
result = H5C_reset_cache_hit_rate_stats(NULL);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_reset_cache_hit_rate_stats accepted NULL cache_ptr.\n";
}
else if ((cache_ptr->cache_accesses != 2000) || (cache_ptr->cache_hits != 1000)) {
pass = FALSE;
failure_mssg = "Failed call to H5C_reset_cache_hit_rate_stats altered stats?\n";
}
}
if (pass) {
result = H5C_reset_cache_hit_rate_stats(cache_ptr);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_reset_cache_hit_rate_stats failed.\n";
}
else if ((cache_ptr->cache_accesses != 0) || (cache_ptr->cache_hits != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache hit rate stats.\n";
}
}
if (pass) {
rpt_fcn_called = FALSE;
i = 0;
while (pass && (i < 1000)) {
protect_entry(file_ptr, PICO_ENTRY_TYPE, i + 500);
if (pass) {
unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i + 500, H5C__NO_FLAGS_SET);
}
i++;
}
}
if (pass) {
result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate failed.\n";
}
else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.5)) { /* i.e. hit_rate != 0.5 */
pass = FALSE;
failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 4.\n";
}
else if ((cache_ptr->cache_accesses != 1000) || (cache_ptr->cache_hits != 500)) {
pass = FALSE;
failure_mssg = "Unexpected cache hit rate stats.\n";
}
else if (rpt_fcn_called) {
pass = FALSE;
failure_mssg = "Report function called?.\n";
}
}
/***************************************************
* So much for testing H5C_get_cache_hit_rate() and
* H5C_reset_cache_hit_rate_stats(). Now on to
* H5C_get_cache_size().
***************************************************/
if (pass) {
result = H5C_get_cache_size(NULL, &max_size, &min_clean_size, &cur_size, &cur_num_entries);
if (result != FAIL) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size accepted NULL cache_ptr.\n";
}
}
if (pass) {
max_size = 0;
min_clean_size = 0;
cur_size = 0;
cur_num_entries = 0;
result = H5C_get_cache_size(cache_ptr, &max_size, &min_clean_size, &cur_size, &cur_num_entries);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 1.\n";
}
else if (max_size != (1 * 1024 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected max_size 1.\n";
}
else if (min_clean_size != (512 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 1.\n";
}
else if (cur_size != (1500 * PICO_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_size 1.\n";
}
else if (cur_num_entries != 1500) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 1.\n";
}
}
/* read a larger entry so that cur_size and cur_num_entries will be
* different.
*/
if (pass) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
}
if (pass) {
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET);
}
if (pass) {
max_size = 0;
min_clean_size = 0;
cur_size = 0;
cur_num_entries = 0;
result = H5C_get_cache_size(cache_ptr, &max_size, &min_clean_size, &cur_size, &cur_num_entries);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 2.\n";
}
else if (max_size != (1 * 1024 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected max_size 2.\n";
}
else if (min_clean_size != (512 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 2.\n";
}
else if (cur_size != ((1500 * PICO_ENTRY_SIZE) + MONSTER_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_size 2.\n";
}
else if (cur_num_entries != 1501) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 2.\n";
}
}
if (pass) {
max_size = 0;
result = H5C_get_cache_size(cache_ptr, &max_size, NULL, NULL, NULL);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 3.\n";
}
else if (max_size != (1 * 1024 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected max_size 3.\n";
}
}
if (pass) {
min_clean_size = 0;
result = H5C_get_cache_size(cache_ptr, NULL, &min_clean_size, NULL, NULL);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 4.\n";
}
else if (min_clean_size != (512 * 1024)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 4.\n";
}
}
if (pass) {
cur_size = 0;
result = H5C_get_cache_size(cache_ptr, NULL, NULL, &cur_size, NULL);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 5.\n";
}
else if (cur_size != ((1500 * PICO_ENTRY_SIZE) + MONSTER_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_size 5.\n";
}
}
if (pass) {
cur_num_entries = 0;
result = H5C_get_cache_size(cache_ptr, NULL, NULL, NULL, &cur_num_entries);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size failed 6.\n";
}
else if (cur_num_entries != 1501) {
pass = FALSE;
failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 2.\n";
}
}
if (cache_ptr) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_auto_cache_resize_aux_fcns() */
/*-------------------------------------------------------------------------
* Function: check_metadata_blizzard_absence()
*
* Purpose: Test to verify that a 'metadata blizzard' can not occur
* upon insertion into the cache.
*
* A 'metadata blizzard' in this context occurs when the cache
* gets completely filled with all dirty entries. Upon needing
* to make space in the cache, the cache then has no clean
* entries ready to evict, and must clean every dirty entry
* in the cache first, due to the second chance replacement
* policy. (i.e. after cleaning an entry, it is bumped to the
* top of the LRU to make a second pass before eviction).
* The massive amount of sequential writes to disk while
* flushing the entire cache is what constitutes a 'metadata
* blizzard'.
*
* Return: void
*
* Programmer: Mike McGreevy
* 12/16/08
*
*-------------------------------------------------------------------------
*/
static unsigned
check_metadata_blizzard_absence(hbool_t fill_via_insertion, unsigned paged)
{
struct expected_entry_status *expected = NULL;
int entry_type = HUGE_ENTRY_TYPE;
size_t entry_size = HUGE_ENTRY_SIZE; /* 16 KB */
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
hbool_t show_progress = FALSE;
int32_t checkpoint = 0;
int32_t entry_idx = 0;
int32_t i;
/* Expected deserialized status of entries depends on how they get into
* the cache. Insertions = not deserialized, protect/unprotect = deserialized.
*/
hbool_t deserialized = (hbool_t) !(fill_via_insertion);
expected = HDmalloc(150 * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* Set up the expected array. This is used to maintain a table of the
* expected status of every entry used in this test.
*/
for (i = 0; i < 150; i++) {
expected[i].entry_type = HUGE_ENTRY_TYPE;
expected[i].entry_index = (int)i;
expected[i].size = HUGE_ENTRY_SIZE;
expected[i].in_cache = FALSE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = FALSE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = FALSE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type));
HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx));
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
pass = TRUE;
}
reset_entries();
if (fill_via_insertion) {
if (paged)
TESTING("to ensure metadata blizzard absence when inserting (pgd aggr)");
else
TESTING("to ensure metadata blizzard absence when inserting");
} /* end if */
else {
if (paged)
TESTING("to ensure metadata blizzard absence on protect/unprotect (pa)");
else
TESTING("to ensure metadata blizzard absence on protect/unprotect");
} /* end else */
if (show_progress) /* 0 */
HDfprintf(stdout, "\n%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Set up the cache.
*
* The max_cache_size should have room for 50 entries.
* The min_clean_size is half of that, or 25 entries.
*/
file_ptr = setup_cache((size_t)(50 * entry_size), (size_t)(25 * entry_size), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "bad return from cache initialization.\n";
}
else
cache_ptr = file_ptr->shared->cache;
}
if (show_progress) /* 1 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 1:
*
* Inserting dirty entries into an empty cache, until the cache
* violates the min_clean_size requirement. The expected result is
* that none of the inserted entries during this phase will get
* flushed or evicted.
*
* This verifies that while maintaining min_clean_size, we don't go
* overboard and flush entries that we don't need to flush.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Insert 26 entries (indexes 0 through 25) into the cache.
*
* Note that we are inserting 26 entries, and not 25, because the cache
* will only try to adhere to the min_clean_size if it's currently
* being violated. Thus, on insertion of the 26th entry, since the
* min_clean_size will not be violated, it will accept the insertion
* without having to make clean space.
*/
for (entry_idx = 0; entry_idx < 26; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
}
if (show_progress) /* 2 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 2:
*
* Inserting entries into a cache that violates the min_clean_size,
* until the cache is full. The expected result is that each insertion
* will result in the flushing of a dirty entry in the cache.
*
* This verifies that we maintain the min_clean_size. By doing so, we
* prevent building the situation in which a 'metadata blizzard' would
* occur (i.e., the cache being completely filled with dirty entries).
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Insert the 27th entry (index = 26) into the cache.
*
* This should cause the cache to flush its least recently used entry
* before the insertion because it doesn't satisfy the min_clean_size
* constraint.
*/
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Expected status is that there are 27 entries in the cache, and
* entry number 0 has been cleaned.
*
* Changes from last entry verification:
* - entry w/ index 0 has now been flushed and is now clean.
* - entry w/ index 26 is now in the cache and dirty.
*/
/* entry w/ index 0 has now been flushed and is now clean. */
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
/* entry w/ index 26 is now in the cache and dirty. */
expected[26].in_cache = TRUE;
expected[26].is_dirty = TRUE;
expected[26].deserialized = (unsigned char)deserialized;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
26, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Insert the 28th entry (index = 27) into the cache.
*
* This should, once again, cause the cache to flush its least
* recently used entry before the insertion as it again does not
* satisfy the min_clean_size constraint.
*/
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Expected status is that there are 28 entries in the cache, and
* entry numbers 0 and 1 have been cleaned.
*
* Changes from last entry verification:
* - entry w/ index 1 has now been flushed and is now clean.
* - entry w/ index 27 is now in the cache and dirty.
*/
/* entry w/ index 1 has now been flushed and is now clean. */
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
/* entry w/ index 27 is now in the cache and dirty. */
expected[27].in_cache = TRUE;
expected[27].is_dirty = TRUE;
expected[27].deserialized = (unsigned char)deserialized;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
27, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 4 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Fill out the rest of the cache with entries */
/* Verify expected status of entries after each insertion */
for (; entry_idx < 50; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Expected status is that after each insertion, the entry
* inserted 26 insertions ago has been flushed, and the
* entry currently getting inserted is now in the cache and
* dirty.
*/
expected[entry_idx - 26].is_dirty = FALSE;
expected[entry_idx - 26].serialized = TRUE;
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
/* Verify that the cache is now full */
if (cache_ptr->cache_full != TRUE) {
pass = FALSE;
failure_mssg = "cache not completely filled.\n";
}
}
if (show_progress) /* 5 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 3:
*
* Inserting entries into a cache that is completely full. Insertions
* of new entries will force evictions of old entries, but since the
* min_clean_size has been maintained, doing so will not result in
* the entire cache getting flushed in order to evict a single entry,
* as a clean entry will be available to flush reasonably close to
* the bottom of the LRU.
*
* This verifies that with a maintained min_clean_size, a metadata
* blizzard does not occur on insertion.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Insert the 51st entry (index = 50) into the cache.
*
* The cache is full prior to the insertion, so it will
* have to evict in order to make room for the new entry.
*/
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Changes from last entry verification:
* - entry w/ index 0 has been evicted.
* - entries w/ indices 24,25 have now been flushed and are clean.
* - entry w/ index 50 is now in the cache and dirty.
*/
/* entry w/ index 0 has been evicted. */
expected[0].in_cache = FALSE;
expected[0].destroyed = TRUE;
/* entries w/ indices 24,25 have now been flushed and are clean. */
expected[24].is_dirty = FALSE;
expected[24].serialized = TRUE;
expected[25].is_dirty = FALSE;
expected[25].serialized = TRUE;
/* entry w/ index 50 is now in the cache and dirty */
expected[50].in_cache = TRUE;
expected[50].is_dirty = TRUE;
expected[50].deserialized = (unsigned char)deserialized;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
50, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 6 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Insert 49 more entries (indices 51-99) into the cache.
*
* The cache will be flushing an entry on each insertion, and
* evicting an entry on each insertion.
*
* After each insertion, verify the expected status of the
* entries in the cache.
*/
for (; entry_idx < 100; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* This past inserted entry is now in the cache and dirty */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
/* The entry inserted 50 insertions ago has been evicted */
expected[entry_idx - 50].in_cache = FALSE;
expected[entry_idx - 50].destroyed = TRUE;
/* If the newly inserted entry is among the first 24
* insertions in this loop, then the insertion will
* have resulted in a flush of the entry inserted
* 25 insertions ago. */
if (entry_idx < 75) {
expected[entry_idx - 25].is_dirty = FALSE;
expected[entry_idx - 25].serialized = TRUE;
}
/* If the newly inserted entry is among the last
* 25 insertions in this loop, then the insertion will
* have resulted in a flush of the entry inserted 26
* insertions ago. This switch is because there was two
* consecutive clean entries in the cache (due to 51/49
* dirty/clean ratio when full), so instead of
* flush-then-evict, it switches to evict-then-flush. */
else {
expected[entry_idx - 26].is_dirty = FALSE;
expected[entry_idx - 26].serialized = TRUE;
}
/* Verify this expected status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
}
if (show_progress) /* 7 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 4:
*
* Flushing the entire cache, and then inserting entries into a cache
* that is completely full, but all clean.
*
* Phases 1 and 2 are then repeated. Rather than inserting dirty entries
* into an empty cache, we're inserting into a full cache that's all
* clean, thus an eviction occurs before each insertion.
*
* When the cache finally hits the point of violating the
* min_clean_size, the bottom half of the LRU will be filled with
* clean entries and the top half will be filled with recently inserted
* dirty entries. We'll then verify that an insertion will only evict
* one entry and flush one entry, and no more.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Flush the cache.
*
* We're doing this so we can repeat the above insertions, but
* starting from a cache filled with clean entries as opposed
* to an empty cache.
*/
flush_cache(file_ptr, /* H5F_t * file_ptr */
FALSE, /* hbool_t destory_entries */
FALSE, /* hbool_t dump_stats */
FALSE); /* hbool_t dump_detailed_stats */
/* Verify that the cache is clean */
verify_clean();
/* Verify the status of the entries.
*
* Changes from last entry verification:
* - entries w/ indices 74-99 have been flushed.
*/
/* entries w/ indices 74-99 have been flushed. */
for (i = 74; i < 100; i++) {
expected[i].is_dirty = FALSE;
expected[i].serialized = TRUE;
}
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
0, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 8 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Insert 26 entries (indexes 100 through 125) into the cache.
*
* The cache will evict 26 entries since it's currently full with
* all clean entries. None of the entries we're inserting now
* will get cleaned, however.
*/
for (entry_idx = 100; entry_idx < 126; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* This past inserted entry is now in the cache and dirty */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
/* The entry with ID minus 50 will have been evicted */
expected[entry_idx - 50].in_cache = FALSE;
expected[entry_idx - 50].destroyed = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
}
if (show_progress) /* 9 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Insert the 127th entry (index = 126) into the cache. */
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Changes from last entry verification:
* - entry w/ index 76 is evicted.
* - entry w/ index 100 is cleaned.
* - entry w/ index 126 is now in the cache and dirty.
*/
/* entry w/ index 76 has been evicted. */
expected[76].in_cache = FALSE;
expected[76].destroyed = TRUE;
/* entry w/ index 100 has now been flushed and is now clean. */
expected[100].is_dirty = FALSE;
expected[100].serialized = TRUE;
/* entry w/ index 26 is now in the cache and dirty. */
expected[126].in_cache = TRUE;
expected[126].is_dirty = TRUE;
expected[126].deserialized = (unsigned char)deserialized;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
126, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 10 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (pass) {
/* Insert entries w/ indices 127 through 149 into the cache */
for (entry_idx = 127; entry_idx < 150; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* This past inserted entry is now in the cache and dirty */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
/* The entry with ID minus 50 will have been evicted */
expected[entry_idx - 50].in_cache = FALSE;
expected[entry_idx - 50].destroyed = TRUE;
/* The entry with ID minus 26 will now be clean */
expected[entry_idx - 26].is_dirty = FALSE;
expected[entry_idx - 26].serialized = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
}
if (show_progress) /* 11 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
if (cache_ptr) {
/* We're done with testing. We can take down the cache. */
takedown_cache(file_ptr, FALSE, FALSE);
reset_entries();
}
if (show_progress) /* 12 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", __func__, checkpoint++, pass);
HDfree(expected);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
return (unsigned)!pass;
} /* check_metadata_blizzard_absence() */
/*-------------------------------------------------------------------------
* Function: check_flush_deps()
*
* Purpose: Exercise the flush dependency routines.
*
* Return: 0 on success, non-zero on failure
*
* Programmer: Quincey Koziol
* 3/12/09
*
*-------------------------------------------------------------------------
*/
static unsigned
check_flush_deps(unsigned paged)
{
H5F_t *file_ptr = NULL; /* File for this test */
H5C_t *cache_ptr = NULL; /* Metadata cache for this test */
test_entry_t *base_addr; /* Base address of entries for test */
int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */
unsigned u; /* Local index variable */
/* clang-format off */
struct expected_entry_status expected[5] =
{
/* entry entry in at main flush dep flush dep child flush flush flush */
/* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */
{ PICO_ENTRY_TYPE, 0, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 1, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 2, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 3, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 4, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}
};
/* clang-format on */
if (paged)
TESTING("flush dependencies (paged aggregation)");
else
TESTING("flush dependencies");
pass = TRUE;
/* allocate a cache, build up flush dependency hierarchy and tear it down.
* Verify that all performs as expected.
*/
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
base_addr = entries[entry_type];
if (!pass)
CACHE_ERROR("setup_cache failed")
/* Insert entries to work with into the cache */
for (u = 0; u < 5; u++) {
insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET);
if (!pass)
CACHE_ERROR("insert_entry failed")
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[u].in_cache = TRUE;
expected[u].is_dirty = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
/* Test Case #1 - Single flush dependency relationship */
/* Create flush dependency between entries 0 (child) & 1 (parent) */
{
hbool_t in_cache, is_flush_dep_parent, is_flush_dep_child;
test_entry_t *entry_ptr;
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
/* Check the parent's entry status */
entry_ptr = &(base_addr[1]);
if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
&is_flush_dep_parent, &is_flush_dep_child, NULL) < 0)
CACHE_ERROR("H5C_get_entry_status() failed")
if (!in_cache || is_flush_dep_parent || is_flush_dep_child)
CACHE_ERROR("invalid entry status")
/* Check the child's entry status */
entry_ptr = &(base_addr[0]);
if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
&is_flush_dep_parent, &is_flush_dep_child, NULL) < 0)
CACHE_ERROR("H5C_get_entry_status() failed")
if (!in_cache || is_flush_dep_parent || is_flush_dep_child)
CACHE_ERROR("invalid entry status")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Check the parent's entry status */
entry_ptr = &(base_addr[1]);
if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
&is_flush_dep_parent, &is_flush_dep_child, NULL) < 0)
CACHE_ERROR("H5C_get_entry_status() failed")
if (!in_cache || !is_flush_dep_parent || is_flush_dep_child)
CACHE_ERROR("invalid entry status")
/* Check the child's entry status */
entry_ptr = &(base_addr[0]);
if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
&is_flush_dep_parent, &is_flush_dep_child, NULL) < 0)
CACHE_ERROR("H5C_get_entry_status() failed")
if (!in_cache || is_flush_dep_parent || !is_flush_dep_child)
CACHE_ERROR("invalid entry status")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 0 (child) & 1 (parent) */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #2 - Multiple children for one parent flush dependency relationship */
/* Create flush dependency between entries 0, 1 (children) & 2 (parent) */
{
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 2;
expected[0].flush_dep_npar = 1;
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 2;
expected[2].flush_dep_ndirty_chd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 0, 1 (children) & 2 (parent) */
{
destroy_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3a1 - Single chain of flush dependencies, 4 entries tall
* created from the "bottom up" and destroyed from the "top down"
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
expected[3].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "top down" */
{
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].is_protected = FALSE;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
expected[3].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3a2 - Single chain of flush dependencies, 4 entries tall
* created from the "bottom up" and destroyed from the "bottom up"
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
expected[3].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "bottom up" */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].is_protected = FALSE;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
expected[3].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3b1 - Single chain of flush dependencies, 4 entries tall
* created from the "top down" and destroyed from the "top down"
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
expected[3].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "top down" */
{
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].is_protected = FALSE;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
expected[3].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3b2 - Single chain of flush dependencies, 4 entries tall
* created from the "top down" and destroyed from the "bottom up"
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
expected[3].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "bottom up" */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].is_protected = FALSE;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
expected[3].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #4 - Multiple children for a single parent */
/* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */
{
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
for (u = 0; u < 4; u++) {
create_flush_dependency(entry_type, 4, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[u].flush_dep_par_type[0] = entry_type;
expected[u].flush_dep_par_idx[0] = 4;
expected[u].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd++;
expected[4].flush_dep_ndirty_chd++;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Destroy flush dependency between entries */
{
for (u = 0; u < 4; u++) {
destroy_flush_dependency(entry_type, 4, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[u].flush_dep_npar = 0;
expected[4].flush_dep_nchd--;
expected[4].flush_dep_ndirty_chd--;
/* Check for destroying flush dependency on last entry */
if (3 == u) {
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].is_protected = FALSE;
expected[4].is_pinned = FALSE;
} /* end if */
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Test Case #5a - Join two flush dependency chains together, creating a single
* un-forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1 and 3->4 (parent)
* then add entry 4 as a child of 0
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
expected[4].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 0;
expected[4].flush_dep_npar = 1;
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 1;
expected[0].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 0 first */
{
destroy_flush_dependency(entry_type, 0, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[0].is_protected = FALSE;
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
expected[0].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_protected = FALSE;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
expected[4].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #5b - Join two flush dependency chains together, creating a
* forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent)
* then add entry 4 as a child of 1
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5F_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
expected[4].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 1, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 1;
expected[4].flush_dep_npar = 1;
expected[1].flush_dep_nchd = 2;
expected[1].flush_dep_ndirty_chd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 1 first */
{
destroy_flush_dependency(entry_type, 1, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_protected = FALSE;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
expected[4].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #5c - Join two flush dependency chains together, creating a
* forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent)
* then add entry 4 as a child of 2
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
expected[4].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 2, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 2;
expected[4].flush_dep_npar = 1;
expected[2].flush_dep_nchd = 2;
expected[2].flush_dep_ndirty_chd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 2 first */
{
destroy_flush_dependency(entry_type, 2, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_protected = FALSE;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
expected[4].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #6a - Make certain that flush dependency relationship with parent
* already pinned works (unpin ater destroying flush dependency)
*/
/* Create flush dependency between entries 0 (child) & 1 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
pin_entry(entry_type, 1);
if (!pass)
CACHE_ERROR("pin_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Unpin entry & destroy flush dependency between entries 0 (child) & 1 (parent) */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unpin_entry(entry_type, 1);
if (!pass)
CACHE_ERROR("unpin_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #6b - Make certain that flush dependency relationship with parent
* already pinned works (unpin before destroying flush dependency)
*/
/* Create flush dependency between entries 0 (child) & 1 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
pin_entry(entry_type, 1);
if (!pass)
CACHE_ERROR("pin_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Unpin entry & destroy flush dependency between entries 0 (child) & 1 (parent) */
{
unpin_entry(entry_type, 1);
if (!pass)
CACHE_ERROR("unpin_entry failed")
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #7 - Simple multiple parents
*/
/* Create flush dependency between entries (child) 0 and 1, 2 (parents)
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[1] = entry_type;
expected[0].flush_dep_par_idx[1] = 2;
expected[0].flush_dep_npar = 2;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[2].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 2;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = FALSE;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[1].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[2].is_protected = FALSE;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[2].flush_dep_ndirty_chd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
done:
if (file_ptr)
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else {
H5_FAILED();
HDfprintf(stdout, "%s.\n", failure_mssg);
} /* end else */
return (unsigned)!pass;
} /* check_flush_deps() */
/*-------------------------------------------------------------------------
* Function: check_flush_deps_err()
*
* Purpose: Check the flush dependency routines for error conditions.
*
* Return: 0 on success, non-zero on failure
*
* Programmer: Quincey Koziol
* 3/16/09
*
*-------------------------------------------------------------------------
*/
static unsigned
check_flush_deps_err(unsigned paged)
{
H5F_t *file_ptr = NULL; /* File for this test */
int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */
unsigned test_count; /* Test iteration variable */
if (paged)
TESTING("flush dependency errors (paged aggregation)");
else
TESTING("flush dependency errors");
pass = TRUE;
/* Loop over test cases, check for various errors in configuring flush
* dependencies. Verify that all performs as expected.
*/
for (test_count = 0; test_count < 7; test_count++) {
unsigned u; /* Local index variable */
herr_t result; /* Generic return value */
/* Allocate a cache */
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (!pass)
CACHE_ERROR("setup_cache failed")
/* Insert entries to work with into the cache */
for (u = 0; u < 10; u++) {
insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET);
if (!pass)
CACHE_ERROR("insert_entry failed")
} /* end for */
/* Various test cases */
switch (test_count) {
/* Verify that parent entry in flush dependency must be protected */
case 0:
result =
H5C_create_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1]));
if (result != FAIL)
CACHE_ERROR("Creating flush dependency with unprotected entry succeeded")
break;
/* Verify that entry can't have flush dependency on itself */
case 1:
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
result =
H5C_create_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[0]));
if (result != FAIL)
CACHE_ERROR("Creating flush dependency with parent == child")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
break;
/* Verify that parent entry must be protected */
case 2:
result =
H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1]));
if (result != FAIL)
CACHE_ERROR("Destroying [non-existent] dependency when parent isn't protected")
break;
/* Verify that parent entry has flush dependency */
case 3:
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
result =
H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1]));
if (result != FAIL)
CACHE_ERROR("Destroying dependency when parent isn't in relationship")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
break;
/* Verify that child entry is in flush dependency relationship */
case 4:
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
result =
H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[2]));
if (result != FAIL)
CACHE_ERROR("Destroying dependency when child isn't in relationship")
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
break;
/* Verify that parent has child as direct descendant */
case 5:
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
result =
H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[4]));
if (result != FAIL)
CACHE_ERROR("Destroying dependency when child is not a direct descendant has no children "
"at child's height")
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
destroy_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
destroy_flush_dependency(entry_type, 3, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
break;
/* Verify that child entry is child of parent */
case 6:
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
result =
H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[3]));
if (result != FAIL)
CACHE_ERROR("Destroying dependency when child isn't in relationship")
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
destroy_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
break;
default:
CACHE_ERROR("Unknown test case!")
} /* end switch */
takedown_cache(file_ptr, FALSE, FALSE);
if (!pass)
CACHE_ERROR("takedown_cache failed")
file_ptr = NULL;
} /* end for */
done:
if (file_ptr)
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else {
H5_FAILED();
HDfprintf(stdout, "%s.\n", failure_mssg);
} /* end else */
return (unsigned)!pass;
} /* check_flush_deps_err() */
/*-------------------------------------------------------------------------
* Function: check_flush_deps_order()
*
* Purpose: Verify that the order that entries with flush dependencies
* is correct
*
* Return: 0 on success, non-zero on failure
*
* Programmer: Quincey Koziol
* 3/17/09
*
*-------------------------------------------------------------------------
*/
static unsigned
check_flush_deps_order(unsigned paged)
{
H5F_t *file_ptr = NULL; /* File for this test */
H5C_t *cache_ptr = NULL; /* Metadata cache for this test */
int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */
unsigned u; /* Local index variable */
unsigned flush_order; /* Index for tracking flush order */
/* clang-format off */
struct expected_entry_status expected[5] =
{
/* entry entry in at main flush dep flush dep child flush flush flush */
/* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */
{ PICO_ENTRY_TYPE, 0, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 1, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 2, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 3, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ PICO_ENTRY_TYPE, 4, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}
};
/* clang-format on */
if (paged)
TESTING("flush dependencies flush order (paged aggregation)");
else
TESTING("flush dependencies flush order");
pass = TRUE;
/* allocate a cache, build up flush dependency hierarchy and tear it down.
* Verify that all performs as expected.
*/
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
cache_ptr = file_ptr->shared->cache;
if (!pass)
CACHE_ERROR("setup_cache failed")
/* Insert entries to work with into the cache */
for (u = 0; u < 5; u++) {
insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET);
if (!pass)
CACHE_ERROR("insert_entry failed")
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[u].in_cache = TRUE;
expected[u].is_dirty = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
/* Test Case #1a - Single flush dependency relationship, increasing addr order */
/* Create flush dependency between entries 0 (child) & 1 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[1].flush_dep_ndirty_chd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[1].is_protected = FALSE;
expected[1].flush_dep_ndirty_chd = 0;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 0 (child) & 1 (parent) */
{
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #1b - Single flush dependency relationship, decreasing addr order */
/* Create flush dependency between entries 0 (child) & 1 (parent) */
{
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 1;
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 0;
expected[1].flush_dep_npar = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0 & 1 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, TRUE);
dirty_entry(file_ptr, entry_type, 1, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 1;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 0 (child) & 1 (parent) */
{
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
expected[1].flush_dep_npar = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #2a - Multiple children for one parent flush dependency relationship
* increasing addr order
*/
/* Create flush dependency between entries 0, 1 (children) & 2 (parent) */
{
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 2;
expected[0].flush_dep_npar = 1;
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0, 1 & 2 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, FALSE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 2;
expected[2].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 0, 1 (children) & 2 (parent) */
{
destroy_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].flush_dep_npar = 0;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #2b - Multiple children for one parent flush dependency relationship
* decreasing addr order
*/
/* Create flush dependency between entries 1, 2 (children) & 0 (parent) */
{
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
create_flush_dependency(entry_type, 0, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 2;
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 0;
expected[1].flush_dep_npar = 1;
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 0;
expected[2].flush_dep_npar = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0, 1 & 2 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, TRUE);
dirty_entry(file_ptr, entry_type, 1, FALSE);
dirty_entry(file_ptr, entry_type, 2, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 2;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 0;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries 1, 2 (children) & 0 (parent) */
{
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
destroy_flush_dependency(entry_type, 0, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
expected[1].flush_dep_npar = 0;
expected[2].flush_dep_npar = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3a - Single chain of flush dependencies, 4 entries tall,
* increasing addr order
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-3 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 2;
expected[2].is_protected = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 3;
expected[3].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "top down" */
{
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #3b - Single chain of flush dependencies, 4 entries tall
* decreasing addr order
*/
/* Create flush dependency between entries (child) 0->1->2->3 (parent) */
{
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 1;
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 0;
expected[1].flush_dep_npar = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 1;
expected[2].flush_dep_npar = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 2;
expected[3].flush_dep_npar = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-3 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, TRUE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 3;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 2;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 1;
expected[2].is_protected = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, from the "bottom up" */
{
destroy_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
expected[3].flush_dep_npar = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
expected[2].flush_dep_npar = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
expected[1].flush_dep_npar = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #4a - Multiple children for a single parent, increasing addr order */
/* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */
{
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
for (u = 0; u < 4; u++) {
create_flush_dependency(entry_type, 4, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[u].flush_dep_par_type[0] = entry_type;
expected[u].flush_dep_par_idx[0] = 4;
expected[u].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = u + 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-4 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, FALSE);
dirty_entry(file_ptr, entry_type, 2, FALSE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
dirty_entry(file_ptr, entry_type, 4, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
expected[4].serialized = FALSE;
expected[4].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 2;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 3;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
expected[4].flush_order = 4;
expected[4].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries */
{
for (u = 0; u < 4; u++) {
destroy_flush_dependency(entry_type, 4, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[u].flush_dep_npar = 0;
expected[4].flush_dep_nchd = 3 - u;
/* Check for destroying flush dependency on last entry */
if (3 == u) {
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].is_pinned = FALSE;
} /* end if */
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Test Case #4b - Multiple children for a single parent, decreasing addr order */
/* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */
{
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
for (u = 1; u < 5; u++) {
create_flush_dependency(entry_type, 0, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[u].flush_dep_par_type[0] = entry_type;
expected[u].flush_dep_par_idx[0] = 0;
expected[u].flush_dep_npar = 1;
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = u;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-4 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, TRUE);
dirty_entry(file_ptr, entry_type, 1, FALSE);
dirty_entry(file_ptr, entry_type, 2, FALSE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
dirty_entry(file_ptr, entry_type, 4, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
expected[4].serialized = FALSE;
expected[4].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 4;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 0;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 1;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 2;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
expected[4].flush_order = 3;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries */
{
for (u = 1; u < 5; u++) {
destroy_flush_dependency(entry_type, 0, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[u].flush_dep_npar = 0;
expected[0].flush_dep_nchd = 4 - u;
/* Check for destroying flush dependency on last entry */
if (4 == u) {
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].is_pinned = FALSE;
} /* end if */
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
} /* end for */
}
/* Test Case #5a - Join two flush dependency chains together, creating a single
* un-forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1 and 3->4 (parent)
* then add entry 4 as a child of 0
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 0;
expected[4].flush_dep_npar = 1;
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0 & 1, 3 & 4 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, TRUE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
dirty_entry(file_ptr, entry_type, 4, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
expected[4].serialized = FALSE;
expected[4].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 2;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 3;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 0;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
expected[4].flush_order = 1;
expected[4].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 0 first */
{
destroy_flush_dependency(entry_type, 0, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #5b - Join two flush dependency chains together, creating a
* forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent)
* then add entry 4 as a child of 1
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 1, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 1;
expected[4].flush_dep_npar = 1;
expected[1].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-4 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
dirty_entry(file_ptr, entry_type, 4, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
expected[4].serialized = FALSE;
expected[4].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 3;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 4;
expected[2].is_protected = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 1;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
expected[4].flush_order = 2;
expected[4].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 1 first */
{
destroy_flush_dependency(entry_type, 1, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #5c - Join two flush dependency chains together, creating a
* forked dependency chain
*/
/* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent)
* then add entry 4 as a child of 2
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 4);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 4;
expected[3].flush_dep_npar = 1;
expected[4].is_protected = TRUE;
expected[4].is_pinned = TRUE;
expected[4].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 2, entry_type, 4);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[4].flush_dep_par_type[0] = entry_type;
expected[4].flush_dep_par_idx[0] = 2;
expected[4].flush_dep_npar = 1;
expected[2].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
4, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-4 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
dirty_entry(file_ptr, entry_type, 4, TRUE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'serialized' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
expected[4].serialized = FALSE;
expected[4].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 4;
expected[2].is_protected = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 2;
expected[4].is_dirty = FALSE;
expected[4].serialized = TRUE;
expected[4].flush_order = 3;
expected[4].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, detaching 3->4 from 2 first */
{
destroy_flush_dependency(entry_type, 2, entry_type, 4);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[4].flush_dep_npar = 0;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 4, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[4].is_pinned = FALSE;
expected[4].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #6a - Interlocked multiple parents, increasing addr order
*/
/* Create flush dependencies between entries 0-3, with each entry a child
* of every entry with a higher number.
*/
{
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[0] = entry_type;
expected[0].flush_dep_par_idx[0] = 1;
expected[0].flush_dep_npar = 1;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[1] = entry_type;
expected[0].flush_dep_par_idx[1] = 2;
expected[0].flush_dep_npar = 2;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 2;
expected[1].flush_dep_npar = 1;
expected[2].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 3);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 3, entry_type, 0);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[0].flush_dep_par_type[2] = entry_type;
expected[0].flush_dep_par_idx[2] = 3;
expected[0].flush_dep_npar = 3;
expected[3].is_protected = TRUE;
expected[3].is_pinned = TRUE;
expected[3].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 3, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[1] = entry_type;
expected[1].flush_dep_par_idx[1] = 3;
expected[1].flush_dep_npar = 2;
expected[3].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 3;
expected[2].flush_dep_npar = 1;
expected[3].flush_dep_nchd = 3;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
3, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-3 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'flushed' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 0;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 1;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 2;
expected[2].is_protected = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 3;
expected[3].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, in reverse order */
{
destroy_flush_dependency(entry_type, 3, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[3].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 3, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 1;
expected[3].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 3, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 2;
expected[3].is_pinned = FALSE;
expected[3].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 1;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 0);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[0].flush_dep_npar = 0;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Test Case #6b - Interlocked multiple parents, decreasing addr order
*/
/* Create flush dependencies between entries 0-3, with each entry a parent
* of every entry with a higher number.
*/
{
protect_entry(file_ptr, entry_type, 2);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[0] = entry_type;
expected[3].flush_dep_par_idx[0] = 2;
expected[3].flush_dep_npar = 1;
expected[2].is_protected = TRUE;
expected[2].is_pinned = TRUE;
expected[2].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 1);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 1, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[1] = entry_type;
expected[3].flush_dep_par_idx[1] = 1;
expected[3].flush_dep_npar = 2;
expected[1].is_protected = TRUE;
expected[1].is_pinned = TRUE;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[0] = entry_type;
expected[2].flush_dep_par_idx[0] = 1;
expected[2].flush_dep_npar = 1;
expected[1].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
protect_entry(file_ptr, entry_type, 0);
if (!pass)
CACHE_ERROR("protect_entry failed")
create_flush_dependency(entry_type, 0, entry_type, 3);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[3].flush_dep_par_type[2] = entry_type;
expected[3].flush_dep_par_idx[2] = 0;
expected[3].flush_dep_npar = 3;
expected[0].is_protected = TRUE;
expected[0].is_pinned = TRUE;
expected[0].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 0, entry_type, 2);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[2].flush_dep_par_type[1] = entry_type;
expected[2].flush_dep_par_idx[1] = 0;
expected[2].flush_dep_npar = 2;
expected[0].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
create_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("create_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after creating flush dependency
*/
expected[1].flush_dep_par_type[0] = entry_type;
expected[1].flush_dep_par_idx[0] = 0;
expected[1].flush_dep_npar = 1;
expected[0].flush_dep_nchd = 3;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Flush the cache and verify that the entries were flushed in correct order */
{
add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order);
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
0, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
1, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
2, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Mark entries 0-3 dirty, so they are flushed */
dirty_entry(file_ptr, entry_type, 0, FALSE);
dirty_entry(file_ptr, entry_type, 1, TRUE);
dirty_entry(file_ptr, entry_type, 2, TRUE);
dirty_entry(file_ptr, entry_type, 3, FALSE);
if (!pass)
CACHE_ERROR("dirty_entry failed")
/* Reset 'flushed' flag & 'flush_order' value in expected array */
expected[0].serialized = FALSE;
expected[0].flush_order = -1;
expected[1].serialized = FALSE;
expected[1].flush_order = -1;
expected[2].serialized = FALSE;
expected[2].flush_order = -1;
expected[3].serialized = FALSE;
expected[3].flush_order = -1;
/* Reset index for tracking flush order */
flush_order = 0;
H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg")
if (!pass)
CACHE_ERROR("flushing entries with flush dependendices")
/* Change expected values, and verify the status of the entries
* after destroy flush dependency
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
expected[0].flush_order = 3;
expected[0].is_protected = FALSE;
expected[1].is_dirty = FALSE;
expected[1].serialized = TRUE;
expected[1].flush_order = 2;
expected[1].is_protected = FALSE;
expected[2].is_dirty = FALSE;
expected[2].serialized = TRUE;
expected[2].flush_order = 1;
expected[2].is_protected = FALSE;
expected[3].is_dirty = FALSE;
expected[3].serialized = TRUE;
expected[3].flush_order = 0;
expected[3].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
/* Destroy flush dependency between entries, in reverse order */
{
destroy_flush_dependency(entry_type, 0, entry_type, 1);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[1].flush_dep_npar = 0;
expected[0].flush_dep_nchd = 2;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 0, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 1;
expected[0].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 0, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 2;
expected[0].is_pinned = FALSE;
expected[0].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 2);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[2].flush_dep_npar = 0;
expected[1].flush_dep_nchd = 1;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 1, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 1;
expected[1].is_pinned = FALSE;
expected[1].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
destroy_flush_dependency(entry_type, 2, entry_type, 3);
if (!pass)
CACHE_ERROR("destroy_flush_dependency failed")
/* Change expected values, and verify the status of the entries
* after destroying flush dependency
*/
expected[3].flush_dep_npar = 0;
expected[2].is_pinned = FALSE;
expected[2].flush_dep_nchd = 0;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)0, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
}
done:
if (file_ptr)
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else {
H5_FAILED();
HDfprintf(stdout, "%s.\n", failure_mssg);
} /* end else */
return (unsigned)!pass;
} /* check_flush_deps_order() */
/*-------------------------------------------------------------------------
* Function: check_notify_cb()
*
* Purpose: Exercise the client 'notify' callback.
*
* Return: 0 on success, non-zero on failure
*
* Programmer: Quincey Koziol
* 4/28/09
*
*-------------------------------------------------------------------------
*/
static unsigned
check_notify_cb(unsigned paged)
{
H5F_t *file_ptr = NULL; /* File for this test */
H5C_t *cache_ptr = NULL; /* Metadata cache for this test */
test_entry_t *base_addr; /* Base address of entries for test */
test_entry_t *entry_ptr; /* Cache entry to examine/manipulate */
int entry_type = NOTIFY_ENTRY_TYPE; /* Use entry w/notify callback (size of entries doesn't matter) */
unsigned u; /* Local index variable */
/* clang-format off */
struct expected_entry_status expected[5] =
{
/* entry entry in at main flush dep flush dep child flush flush flush */
/* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */
{ NOTIFY_ENTRY_TYPE, 0, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ NOTIFY_ENTRY_TYPE, 1, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ NOTIFY_ENTRY_TYPE, 2, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ NOTIFY_ENTRY_TYPE, 3, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ NOTIFY_ENTRY_TYPE, 4, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}
};
/* clang-format on */
if (paged)
TESTING("'notify' callback (paged)");
else
TESTING("'notify' callback");
pass = TRUE;
/* Allocate a cache, insert & remove entries, triggering 'notify' callback.
* Verify that all performs as expected.
*/
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged);
if (!file_ptr)
CACHE_ERROR("setup_cache returned NULL")
cache_ptr = file_ptr->shared->cache;
base_addr = entries[entry_type];
if (!pass)
CACHE_ERROR("setup_cache failed")
/* Insert entries to work with into the cache */
for (u = 0; u < 5; u++) {
insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET);
if (!pass)
CACHE_ERROR("insert_entry failed")
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[u].in_cache = TRUE;
expected[u].is_dirty = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
/* Check the entry's 'after insert' count */
entry_ptr = &(base_addr[u]);
if (1 != entry_ptr->notify_after_insert_count)
CACHE_ERROR("invalid notify after insert count")
if (0 != entry_ptr->notify_before_evict_count)
CACHE_ERROR("invalid notify before evict count")
} /* end for */
/* Remove entries from the cache */
for (u = 0; u < 5; u++) {
expunge_entry(file_ptr, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("expunge_entry failed")
/* Change expected values, and verify the status of the entries
* after each expunge
*/
expected[u].in_cache = FALSE;
expected[u].is_dirty = TRUE;
expected[u].serialized = FALSE;
expected[u].destroyed = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
/* Check the entry's 'before evict' count */
entry_ptr = &(base_addr[u]);
if (1 != entry_ptr->notify_after_insert_count)
CACHE_ERROR("invalid notify after insert count")
if (1 != entry_ptr->notify_before_evict_count)
CACHE_ERROR("invalid notify before evict count")
} /* end for */
/* Protect entries to bring them into the cache */
for (u = 0; u < 5; u++) {
protect_entry(file_ptr, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("protect_entry failed")
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[u].in_cache = TRUE;
expected[u].is_dirty = FALSE;
expected[u].is_protected = TRUE;
expected[u].deserialized = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
/* Check the entry's 'after insert' count */
entry_ptr = &(base_addr[u]);
if (2 != entry_ptr->notify_after_insert_count)
CACHE_ERROR("invalid notify after insert count")
if (1 != entry_ptr->notify_before_evict_count)
CACHE_ERROR("invalid notify before evict count")
} /* end for */
/* Unprotect entries, evicting them from the cache */
for (u = 0; u < 5; u++) {
unprotect_entry(file_ptr, entry_type, (int32_t)u, H5C__DIRTIED_FLAG);
if (!pass)
CACHE_ERROR("unprotect_entry failed")
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[u].in_cache = TRUE;
expected[u].is_dirty = TRUE;
expected[u].is_protected = FALSE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
/* Check the entry's 'after insert' count */
entry_ptr = &(base_addr[u]);
if (2 != entry_ptr->notify_after_insert_count)
CACHE_ERROR("invalid notify after insert count")
if (1 != entry_ptr->notify_before_evict_count)
CACHE_ERROR("invalid notify before evict count")
} /* end for */
/* Remove entries from the cache */
for (u = 0; u < 5; u++) {
expunge_entry(file_ptr, entry_type, (int32_t)u);
if (!pass)
CACHE_ERROR("expunge_entry failed")
/* Change expected values, and verify the status of the entries
* after each expunge
*/
expected[u].in_cache = FALSE;
expected[u].is_dirty = TRUE;
expected[u].serialized = FALSE;
expected[u].destroyed = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
(int)u, /* int tag */
(int)5, /* int num_entries */
expected); /* struct expected_entry_staus[] */
if (!pass)
CACHE_ERROR("verify_entry_status failed")
/* Check the entry's 'before evict' count */
entry_ptr = &(base_addr[u]);
if (2 != entry_ptr->notify_after_insert_count)
CACHE_ERROR("invalid notify after insert count")
if (2 != entry_ptr->notify_before_evict_count)
CACHE_ERROR("invalid notify before evict count")
} /* end for */
done:
takedown_cache(file_ptr, FALSE, FALSE);
if (pass)
PASSED();
else {
H5_FAILED();
HDfprintf(stdout, "%s.\n", failure_mssg);
} /* end else */
return (unsigned)!pass;
} /* check_notify_cb() */
/*-------------------------------------------------------------------------
* Function: check_metadata_cork
*
* Purpose: To verify that dirty corked entries are not evicted from the cache
* but clean corked entries can be evicted from the cache.
* The min_clean_size does not have effect.
* NOTE: This is a modification of check_metadata_blizzard_absence().
*
* Return: void
*
* Programmer: Vailin Choi
*
*-------------------------------------------------------------------------
*/
static unsigned
check_metadata_cork(hbool_t fill_via_insertion, unsigned paged)
{
struct expected_entry_status *expected = NULL;
const char *fcn_name = "check_metadata_cork";
int entry_type = HUGE_ENTRY_TYPE;
size_t entry_size = HUGE_ENTRY_SIZE; /* 16 KB */
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
hbool_t show_progress = FALSE;
int32_t checkpoint = 0;
int32_t entry_idx = 0;
int32_t i;
/* Expected deserialized status of entries depends on how they get into
* the cache. Insertions = not deserialized, protect/unprotect = deserialized.
*/
hbool_t deserialized = (hbool_t) !(fill_via_insertion);
expected = HDmalloc(150 * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* Set up the expected array. This is used to maintain a table of the
* expected status of every entry used in this test.
*/
for (i = 0; i < 150; i++) {
expected[i].entry_type = HUGE_ENTRY_TYPE;
expected[i].entry_index = (int)i;
expected[i].size = HUGE_ENTRY_SIZE;
expected[i].in_cache = FALSE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = FALSE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = FALSE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type));
HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx));
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
pass = TRUE;
}
reset_entries();
if (fill_via_insertion)
TESTING("to ensure cork/uncork metadata when inserting");
else
TESTING("to ensure cork/uncork metadata on protect/unprotect");
if (show_progress) /* 0 */
HDfprintf(stdout, "\n%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Set up the cache.
*
* The max_cache_size should have room for 50 entries.
* The min_clean_size is half of that, or 25 entries.
*/
file_ptr = setup_cache((size_t)(50 * entry_size), (size_t)(25 * entry_size), paged);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "bad return from cache initialization.\n";
}
else
cache_ptr = file_ptr->shared->cache;
}
/* Cork the cache entry type */
cork_entry_type(file_ptr, entry_type);
if (show_progress) /* 1 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 1:
*
* Inserting dirty corked entries into an empty cache, until the cache
* violates the min_clean_size requirement.
* Since entries are all dirty and corked, no entry will get flushed or
* evicted.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Insert 26 entries (indexes 0 through 25) into the cache. */
for (entry_idx = 0; entry_idx < 26; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Change expected values, and verify the status of the entries
* after each insertion
*/
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
expected[entry_idx].is_corked = TRUE;
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
}
if (show_progress) /* 2 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 2:
*
* Inserting entries into a cache that violates the min_clean_size,
* until the cache is full.
* Since entries are all dirty and corked, no entry during this phase
* will get flushed or evicted.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Insert the 27th entry (index = 26) into the cache. */
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Expected status is that there are 27 entries in the cache, and
* all entries remain the same as before since they are all corked
* and dirty
*/
/* entry w/ index 26 is now in the cache and dirty. */
expected[26].in_cache = TRUE;
expected[26].is_dirty = TRUE;
expected[26].deserialized = (unsigned char)deserialized;
expected[26].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
26, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Insert the 28th entry (index = 27) into the cache. */
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx++, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries.
*
* Expected status is that there are 28 entries in the cache, and
* all entries are dirty corked entries.
*
*/
expected[27].in_cache = TRUE;
expected[27].is_dirty = TRUE;
expected[27].deserialized = (unsigned char)deserialized;
expected[27].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
27, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 4 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Fill out the rest of the cache with entries */
/* Verify expected status of entries after each insertion */
for (; entry_idx < 50; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/*
* Expected status: all entries are dirty corked entries.
*/
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
expected[entry_idx].is_corked = TRUE;
/* Verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
/* Verify that the cache is now full */
if (cache_ptr->cache_full != TRUE) {
pass = FALSE;
failure_mssg = "cache not completely filled.\n";
}
}
if (show_progress) /* 5 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 3:
* Inserting entries into a cache that is completely full.
* No entry is flushed or evicted because all entries are dirty & corked.
*
* ========================================================================
* ========================================================================
*/
if (show_progress) /* 6 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Insert 50 more entries (indices 50-99) into the cache. */
for (; entry_idx < 100; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* This past inserted entry is now in the cache: dirty and corked */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
expected[entry_idx].is_corked = TRUE;
/* Verify this expected status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
}
if (show_progress) /* 7 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
/* ========================================================================
* ========================================================================
* Phase 4:
*
* Flushing the entire cache, and then inserting entries into a cache
* that is completely full, but all clean.
*
* ========================================================================
* ========================================================================
*/
if (pass) {
/* Flush the cache.
*
* We're doing this so we can repeat the above insertions, but
* starting from a cache filled with clean entries as opposed
* to an empty cache.
*/
flush_cache(file_ptr, /* H5F_t * file_ptr */
FALSE, /* hbool_t destory_entries */
FALSE, /* hbool_t dump_stats */
FALSE); /* hbool_t dump_detailed_stats */
/* Verify that the cache is clean */
verify_clean();
/* Verify the status of the entries. */
/* All entries are flushed, clean but still corked */
for (i = 0; i < 100; i++) {
expected[i].serialized = TRUE;
expected[i].is_dirty = FALSE;
expected[i].is_corked = TRUE;
}
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
0, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 8 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Will evict 50 clean "corked" entries all at once when inserting the 100th entry */
for (i = 0; i < 51; i++) {
expected[i].in_cache = FALSE;
expected[i].destroyed = TRUE;
expected[i].is_corked = TRUE;
}
/* Insert the 100th entry */
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
100, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
100); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
100, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* The 100th inserted entry is now in the cache and dirty */
expected[100].in_cache = TRUE;
expected[100].is_dirty = TRUE;
expected[100].deserialized = (unsigned char)deserialized;
expected[100].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
100, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
if (show_progress) /* 9 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Insert 25 more corked entries (indexes 101 through 125) into the cache. */
/* Clean entry will be evicted one a time */
for (entry_idx = 101; entry_idx < 126; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* The inserted entry is now in the cache and dirty */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
expected[entry_idx].is_corked = TRUE;
expected[entry_idx - 50].in_cache = FALSE;
expected[entry_idx - 50].destroyed = TRUE;
expected[entry_idx - 50].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
} /* end for */
}
if (show_progress) /* 10 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Insert the 127th entry (index = 126) into the cache. */
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
126, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
126); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
126, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* Verify the status of the entries. */
expected[126].in_cache = TRUE;
expected[126].is_dirty = TRUE;
expected[126].deserialized = (unsigned char)deserialized;
expected[126].is_corked = TRUE;
expected[126 - 50].in_cache = FALSE;
expected[126 - 50].destroyed = TRUE;
expected[126 - 50].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
126, /* int tag */
150, /* int num_entries */
expected); /* expected */
}
if (show_progress) /* 11 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
if (pass) {
/* Insert entries w/ indices 127 through 149 into the cache */
for (entry_idx = 127; entry_idx < 150; entry_idx++) {
if (fill_via_insertion) {
insert_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__NO_FLAGS_SET); /* unsigned int flags */
}
else {
protect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx); /* int32-t idx */
unprotect_entry(file_ptr, /* H5F_t * file_ptr */
entry_type, /* int32_t type */
entry_idx, /* int32_t idx */
H5C__DIRTIED_FLAG); /* unsigned int flags */
}
/* This past inserted entry is now in the cache, dirty and corked */
expected[entry_idx].in_cache = TRUE;
expected[entry_idx].is_dirty = TRUE;
expected[entry_idx].deserialized = (unsigned char)deserialized;
expected[entry_idx].is_corked = TRUE;
/* Entry that is 50 entries away will be evicted since it is clean even though corked */
expected[entry_idx - 50].in_cache = FALSE;
expected[entry_idx - 50].destroyed = TRUE;
expected[entry_idx - 50].is_corked = TRUE;
/* verify the status */
verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */
entry_idx, /* int tag */
150, /* int num_entries */
expected); /* struct expected_entry_staus[] */
}
}
if (show_progress) /* 12 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
/* We're done with testing. We can take down the cache. */
takedown_cache(file_ptr, FALSE, FALSE);
reset_entries();
if (show_progress) /* 13 */
HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass);
HDfree(expected);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
return (unsigned)!pass;
} /* check_metadata_cork() */
/*-------------------------------------------------------------------------
* Function: check_entry_deletions_during_scans()
*
* Purpose: With the addition of the H5C__TAKE_OWNERSHIP_FLAG, it is
* possible for an entry to be removed from the cache as a
* side effect of flushing an entry.
*
* For the most part, this doesn't cause problems. However,
* during the scans of lists, it is possible that the entry
* removed will be the next entry in the scan -- which if not
* detected, will typeically cause the cache to attempt to flush
* an entry that is no longer in the cache, and which may have
* been deleted.
*
* This function contains tests for correct handling on this
* situation.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/3/15
*
*-------------------------------------------------------------------------
*/
static unsigned
check_entry_deletions_during_scans(unsigned paged)
{
H5F_t *file_ptr = NULL;
if (paged)
TESTING("entry deletion during list scan detection and adaption (par)");
else
TESTING("entry deletion during list scan detection and adaption");
pass = TRUE;
/* allocate a cache, and flush it under various circumstances.
* To the extent possible, verify that the desired actions took
* place.
*/
if (pass) {
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
}
/* run the tests. This set of tests is somewhat eclectic, as
* we are trying to test all locations where the deletion of
* an entry from the cache as a side effect of the fluch of
* a different entry could cause problems.
*/
if (pass) {
cedds__expunge_dirty_entry_in_flush_test(file_ptr);
}
if (pass) {
cedds__H5C_make_space_in_cache(file_ptr);
}
if (pass) {
cedds__H5C__autoadjust__ageout__evict_aged_out_entries(file_ptr);
}
if (pass) {
cedds__H5C_flush_invalidate_cache__bucket_scan(file_ptr);
}
takedown_cache(file_ptr, FALSE, FALSE);
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
return (unsigned)!pass;
} /* check_entry_deletions_during_scans() */
/*-------------------------------------------------------------------------
*
* Function: cedds__expunge_dirty_entry_in_flush_test()
*
* Purpose: Verify that H5C_flush_cache() can handle the removal of
* a dirty entry from the cache during its scan of the
* skip list.
*
* Do this by setting up a full cache, with the last entry
* on the LRU being both dirty and having a flush operation
* that deletes the second to last entry on the LRU. Then
* flush the cache, triggering the flush of the last
* item, and thereby the deletion of the second to last item.
*
* H5C_flush_cache() should handle this deletion gracefully.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/4/15
*
*-------------------------------------------------------------------------
*/
static void
cedds__expunge_dirty_entry_in_flush_test(H5F_t *file_ptr)
{
struct expected_entry_status *expected = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
expected = HDmalloc(36 * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* the expected array is used to maintain a table of the expected status of every
* entry used in this test. Note that since the function that processes this
* array only processes as much of it as it is told to, we don't have to
* worry about maintaining the status of entries that we haven't used yet.
*/
for (i = 0; i < 36; i++) {
expected[i].entry_type = HUGE_ENTRY_TYPE;
expected[i].entry_index = (int)i;
expected[i].size = HUGE_ENTRY_SIZE;
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = TRUE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) {
expected[i].flush_dep_par_type[j] = -1;
expected[i].flush_dep_par_idx[j] = -1;
}
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
pass = TRUE;
}
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to cedds expunge dirty entry in flush test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty on entry to cedds expunge dirty entry in flush test.";
}
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of cedds expunge dirty entry in flush test.";
}
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
}
}
if (pass) {
/* The basic idea of this test is to setup the cache such
* that:
*
* 1) the cache contains several dirty entries.
*
* 2) the first entry on the slist is dirty, and has a flush
* operation that will remove the second entry on the
* slist.
*
* Then load flush the cache. Cache should handle the
* removal of the next entry in the slist scan gracefully.
*/
/* reset the stats before we start. If stats are enabled, we will
* check to see if they are as expected at the end.
*/
H5C_stats__reset(cache_ptr);
/* Load four huge entries into the cache. Recall that huge entries
* are one fourth the size of monster entries (16 KB vs. 64 KB).
*/
for (i = 0; i < 4; i++) {
protect_entry(file_ptr, HUGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * HUGE_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "unexpected size/len in cedds expunge dirty entry in flush test (1)";
}
}
if (pass) {
/* Next, set up the flush operation:
*
* (HET, 0) expunges (HET, 1)
*
*/
add_flush_op(HUGE_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, HUGE_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL);
}
if (pass) {
/* to summarize, at present the following entries
* are in cache with the following characteristics:
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (HET, 0) Y 16 KB Y N - expunge (HET 1)
*
* (HET, 1) Y 16 KB Y N - -
*
* (HET, 2) Y 16 KB Y N - -
*
* (HET, 3) Y 16 KB Y N - -
*
* Recall that in this test bed, flush operations are executed the
* first time the associated entry is flushed, and are then
* deleted.
*/
/* verify the expected status of all entries we have loaded to date: */
verify_entry_status(cache_ptr, 0, 4, expected);
}
/* flush the cache to run the test. In the process, clean up after test. */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush inval failed in cedds expunge dirty entry in flush test")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after cedds expunge dirty entry in flush test";
}
}
#if H5C_COLLECT_CACHE_STATS
/* If we are collecting stats, check to see if we get the expected
* values.
*/
if (pass)
if ((cache_ptr->insertions[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[HUGE_ENTRY_TYPE] != 1) || (cache_ptr->flushes[HUGE_ENTRY_TYPE] != 3) ||
(cache_ptr->evictions[HUGE_ENTRY_TYPE] != 4) ||
(cache_ptr->take_ownerships[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->moves[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pins[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->unpins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[HUGE_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected huge size entry stats in cedds__expunge_dirty_entry_in_flush_test().";
} /* end if */
if (pass)
if ((cache_ptr->slist_scan_restarts != 1) || (cache_ptr->LRU_scan_restarts != 0) ||
(cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "unexpected scan restart stats in cedds__expunge_dirty_entry_in_flush_test().";
} /* end if */
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass)
reset_entries();
if (pass)
/* reset cache min clean size to its expected value */
cache_ptr->min_clean_size = (1 * 1024 * 1024);
HDfree(expected);
} /* cedds__expunge_dirty_entry_in_flush_test() */
/*-------------------------------------------------------------------------
* Function: cedds__H5C_make_space_in_cache()
*
* Purpose: Verify that H5C__make_space_in_cache() can handle the
* removal from the cache of the next item in its reverse scan
* of the LRU list.
*
* Do this by setting up a full cache, with the last entry
* on the LRU being both dirty and having a flush operation
* that deleted the second to last entry on the LRU. Then
* load an additional entry, triggering the flush of the last
* item, and thereby the deletion of the second to last item.
*
* H5C__make_space_in_cache() should detect this deletion, and
* restart its scan of the LRU from the tail, instead of
* examining the now deleted next item up on the LRU.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/4/15
*
*-------------------------------------------------------------------------
*/
static void
cedds__H5C_make_space_in_cache(H5F_t *file_ptr)
{
struct expected_entry_status *expected = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
const int num_huge_entries = 4;
const int num_monster_entries = 32;
expected = HDmalloc(36 * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* the expected array is used to maintain a table of the expected status of every
* entry used in this test. Note that since the function that processes this
* array only processes as much of it as it is told to, we don't have to
* worry about maintaining the status of entries that we haven't used yet.
*/
for (i = 0; i < 36; i++) {
if (i < num_huge_entries) {
expected[i].entry_type = HUGE_ENTRY_TYPE;
expected[i].entry_index = (int)i;
expected[i].size = HUGE_ENTRY_SIZE;
}
else {
expected[i].entry_type = MONSTER_ENTRY_TYPE;
expected[i].entry_index = (int)(i - num_huge_entries);
expected[i].size = MONSTER_ENTRY_SIZE;
}
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
expected[i].is_dirty = TRUE;
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) {
expected[i].flush_dep_par_type[j] = -1;
expected[i].flush_dep_par_idx[j] = -1;
}
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
pass = TRUE;
}
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to cedds for H5C__make_space_in_cache() test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty at start of flush ops eviction test.";
}
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of cedds H5C__make_space_in_cache() test.";
}
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
}
}
if (pass) {
/* The basic idea of this test is to setup the cache such
* that:
*
* 1) the cache is full
*
* 2) the last entry on the LRU is dirty, and has a flush
* operation that will remove the second to last entry
* on the LRU from the cache.
*
* Then load another entry into the cache. See if
* H5C__make_space_in_cache() detects the removal of
* the next item in the scan, and restarts the scan
* from the bottom of the LRU. Note that the newly
* loaded entry must be large enough to require that
* the scan continue after the entry is expunged.
*/
/* reset the stats before we start. If stats are enabled, we will
* check to see if they are as expected at the end.
*/
H5C_stats__reset(cache_ptr);
/* Load four huge entries into the cache. Recall that huge entries
* are one fourth the size of monster entries (16 KB vs. 64 KB).
*/
for (i = 0; i < 4; i++) {
protect_entry(file_ptr, HUGE_ENTRY_TYPE, i);
unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * HUGE_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (1)";
}
}
if (pass) {
/* Next, set up the flush operation:
*
* (HET, 0) expunges (HET, 1)
*
*/
add_flush_op(HUGE_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, HUGE_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL);
}
if (pass) {
/* to summarize, at present the following entries
* are in cache with the following characteristics:
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (HET, 0) Y 16 KB Y N - expunge (HET 1)
*
* (HET, 1) Y 16 KB N N - -
*
* (HET, 2) Y 16 KB N N - -
*
* (HET, 3) Y 16 KB N N - -
*
* Recall that in this test bed, flush operations are executed the
* first time the associated entry is flushed, and are then
* deleted.
*/
/* Now fill up the cache with other, unrelated entries. Recall
* that the cache size is 2 MB and 31 * 64 KB + 4 * 16 KP == 2 MB.
*/
for (i = 0; i < 31; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG);
}
/* The cache should now be exactly full */
if ((cache_ptr->index_len != 35) || (cache_ptr->index_size != 2 * 1024 * 1024) ||
(cache_ptr->index_size != ((4 * HUGE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE)))) {
pass = FALSE;
failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (2)";
}
else {
/* verify the expected status of all entries we have loaded to date: */
verify_entry_status(cache_ptr, 0, 35, expected);
}
}
if (pass) {
/* now load another monster entry. This should cause
* H5C__make_space_in_cache() to be called. (HET 0) is dirty, and is at
* the bottom of the LRU. * Thus it will be flushed, and moved to the
* head of the LRU. However, during the flush, (HET 1) should be expunged
* from the cache. Since (MET 1) is the next item in
* H5C__make_space_in_cache(), must detect its removal from the cache,
* and refrain from trying to flush it.
*
* Since all entries in the cache are dirty, all entries will be flushed,
* and HET 0, 2, and 3 will be evicted to make room for the new
* monster entry (MET, 31).
*
* Verify this. If H5C__make_space_in_cache() chokes, failure will
* be detected in protect_entry(). Thus end the "if(pass)" clause
* there so the error message will not be overwritten.
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31);
}
if (pass) {
/* if the protect succeeded, unprotect and verify that all is at
* it should be.
*/
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__DIRTIED_FLAG);
/* The cache should now be exactly full */
if ((cache_ptr->index_len != 32) || (cache_ptr->index_size != 2 * 1024 * 1024) ||
(cache_ptr->index_size != (32 * MONSTER_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (3)";
}
else {
/* modify the expected table to match the new situation, and
* then call verify_entry_status().
*/
for (i = 0; i < num_huge_entries; i++) {
expected[i].in_cache = FALSE;
expected[i].is_dirty = FALSE;
expected[i].serialized = TRUE;
expected[i].destroyed = TRUE;
}
/* (HET, 1) was expunged, so touch its entry up accordingly */
expected[1].is_dirty = TRUE;
expected[1].serialized = FALSE;
for (i = num_huge_entries; i < num_huge_entries + num_monster_entries - 1; i++) {
expected[i].is_dirty = FALSE;
expected[i].serialized = TRUE;
}
/* verify the expected status of all entries: */
verify_entry_status(cache_ptr, 0, 36, expected);
}
}
/* flush the cache and end the test. */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush invalidate failed after flush op eviction test")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test";
}
}
#if H5C_COLLECT_CACHE_STATS
/* If we are collecting stats, check to see if we get the expected
* values.
*/
if (pass) {
if ((cache_ptr->insertions[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[HUGE_ENTRY_TYPE] != 1) || (cache_ptr->flushes[HUGE_ENTRY_TYPE] != 3) ||
(cache_ptr->evictions[HUGE_ENTRY_TYPE] != 4) ||
(cache_ptr->take_ownerships[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->moves[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pins[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->unpins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[HUGE_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[HUGE_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected large entry stats in cedds__H5C_make_space_in_cache().";
}
}
if (pass)
if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry stats in cedds__H5C_make_space_in_cache().";
} /* end if */
if (pass)
if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 1) ||
(cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "unexpected scan restart stats in cedds__H5C_make_space_in_cache().";
} /* end if */
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass)
reset_entries();
if (pass)
/* reset cache min clean size to its expected value */
cache_ptr->min_clean_size = (1 * 1024 * 1024);
HDfree(expected);
} /* cedds__H5C_make_space_in_cache() */
/*-------------------------------------------------------------------------
* Function: cedds__H5C__autoadjust__ageout__evict_aged_out_entries()
*
* Purpose: Verify that H5C__autoadjust__ageout__evict_aged_out_entries()
* can handle the removal from the cache of the next item in
* its reverse scan of the LRU list.
*
* Do this by setting up a full cache, with the last entry
* on the LRU being both dirty and having a flush operation
* that deletes the second to last entry on the LRU. Then
* access the first item in the LRU repeatedly until the
* item, and thereby the deletion of the second to last item.
*
* H5C__make_space_in_cache() should detect this deletion, and
* restart its scan of the LRU from the tail, instead of
* examining the now deleted next item up on the LRU.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/4/15
*
*-------------------------------------------------------------------------
*/
static void
cedds__H5C__autoadjust__ageout__evict_aged_out_entries(H5F_t *file_ptr)
{
struct expected_entry_status *expected = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
herr_t result;
H5C_auto_size_ctl_t saved_auto_size_ctl;
H5C_auto_size_ctl_t test_auto_size_ctl = {
/* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER,
/* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn,
/* hbool_t set_initial_size = */ TRUE,
/* size_t initial_size = */ (2 * 1024 * 1024),
/* double min_clean_fraction = */ 0.5,
/* size_t max_size = */ (8 * 1024 * 1024),
/* size_t min_size = */ (1 * 1024 * 1024),
/* int64_t epoch_length = */ 1000,
/* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold,
/* double lower_hr_threshold = */ 0.75,
/* double increment = */ 2.0,
/* hbool_t apply_max_increment = */ TRUE,
/* size_t max_increment = */ (4 * 1024 * 1024),
/* enum H5C_cache_flash_incr_mode */
/* flash_incr_mode = */ H5C_flash_incr__off,
/* double flash_multiple = */ 2.0,
/* double flash_threshold = */ 0.5,
/* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__age_out,
/* double upper_hr_threshold = */ 0.995,
/* double decrement = */ 0.5,
/* hbool_t apply_max_decrement = */ FALSE,
/* size_t max_decrement = */ (1 * 1024 * 1024),
/* int32_t epochs_before_eviction = */ 1,
/* hbool_t apply_empty_reserve = */ TRUE,
/* double empty_reserve = */ 0.05};
expected = HDmalloc(36 * sizeof(struct expected_entry_status));
if (expected == NULL) {
pass = FALSE;
failure_mssg = "couldn't allocate expected entry status array\n";
}
if (expected) {
/* the expected array is used to maintain a table of the expected status of every
* entry used in this test. Note that since the function that processes this
* array only processes as much of it as it is told to, we don't have to
* worry about maintaining the status of entries that we haven't used yet.
*/
for (i = 0; i < 36; i++) {
expected[i].entry_type = MONSTER_ENTRY_TYPE;
expected[i].entry_index = (int)i;
expected[i].size = MONSTER_ENTRY_SIZE;
expected[i].in_cache = TRUE;
expected[i].at_main_addr = TRUE;
/* NOTE: special case for first entry */
expected[i].is_dirty = (i == 0);
expected[i].is_protected = FALSE;
expected[i].is_pinned = FALSE;
expected[i].deserialized = TRUE;
expected[i].serialized = FALSE;
expected[i].destroyed = FALSE;
for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) {
expected[i].flush_dep_par_type[j] = -1;
expected[i].flush_dep_par_idx[j] = -1;
}
expected[i].flush_dep_npar = 0;
expected[i].flush_dep_nchd = 0;
expected[i].flush_dep_ndirty_chd = 0;
expected[i].flush_order = -1;
expected[i].is_corked = FALSE;
}
pass = TRUE;
}
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to cedds for "
"H5C__autoadjust__ageout__evict_aged_out_entries() test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg =
"cache not empty at start cedds for H5C__autoadjust__ageout__evict_aged_out_entries() test.";
}
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of cedds "
"H5C__autoadjust__ageout__evict_aged_out_entries() test.";
}
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
}
}
/* save the initial resize configuration so we can restore it later */
if (pass) {
saved_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER;
result = H5C_get_cache_auto_resize_config(cache_ptr, &saved_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_get_cache_auto_resize_config failed.";
}
}
/* set the resize configuration we will be using in the test */
if (pass) {
result = H5C_set_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n";
}
}
if (pass) {
/* The basic idea of this test is to setup the cache such
* that:
*
* 1) the cache is full
*
* 2) the last entry on the LRU is dirty, and has a flush
* operation that will remove the second to last entry
* on the LRU from the cache.
*
* Then access the first item in the LRU until the epoch
* and H5C__autoadjust__ageout__evict_aged_out_entries()
* is invoked. Verify that the function deals with the
* deletion of the next item in its scan cleanly.
*/
/* reset the stats before we start. If stats are enabled, we will
* check to see if they are as expected at the end.
*/
H5C_stats__reset(cache_ptr);
/* load the first entry -- mark it dirty */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG);
/* Then load the rest of the entries to fill the cache:
*
* Recall that the cache size is 2 MB and 32 * 64 KB == 2 MB.
*/
for (i = 1; i < 32; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
}
if (pass) {
/* Next, set up the flush operation:
*
* (MET, 0) expunges (MET, 1)
*
*/
add_flush_op(MONSTER_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, MONSTER_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL);
}
if (pass) {
/* to summarize, at present the following entries
* are in cache with the following characteristics:
*
* in
* entry: cache? size: dirty? pinned? pins: flush operations:
*
* (MET, 0) Y 64 KB Y N - expunge (MET 1)
*
* (MET, 1-31) Y 64 KB N N - -
*
* Recall that in this test bed, flush operations are executed the
* first time the associated entry is flushed, and are then
* deleted.
*/
/* The cache should now be exactly full */
if ((cache_ptr->index_len != 32) || (cache_ptr->index_size != 2 * 1024 * 1024) ||
(cache_ptr->index_size != (32 * MONSTER_ENTRY_SIZE))) {
pass = FALSE;
failure_mssg =
"unexpected size/len in H5C__autoadjust__ageout__evict_aged_out_entries() test (1)";
}
else {
/* verify the expected status of all entries we have loaded to date: */
verify_entry_status(cache_ptr, 0, 32, expected);
}
}
/* protect and unprotect (MET, 31) repeatedly until the end of the first epoch */
while (pass && (cache_ptr->cache_accesses > 0)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET);
}
/* at this point, an epoch marker entry should have been inserted into the LRU */
if (pass) {
/* protect and unprotect (MET, 31) again to get cache_accesses > 0 */
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET);
}
/* protect and unprotect (MET, 31) repeatedly until the end of the second epoch */
while (pass && (cache_ptr->cache_accesses > 0)) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET);
}
/* at this point, only (MET, 0) and (MET, 31) should remain in the cache,
* all other entries having been evicted by the ageout adaptive cache
* resizing algorithm. (Since (MET, 0) was dirty, it was flushed and
* moved to the head of the LRU by the ageout algorithm.)
*/
if (pass) {
if ((cache_ptr->index_len != 2) || (cache_ptr->index_size != 2 * MONSTER_ENTRY_SIZE)) {
pass = FALSE;
failure_mssg =
"unexpected size/len in H5C__autoadjust__ageout__evict_aged_out_entries() test (2)";
}
else {
/* update the expected table to reflect the expected values at
* this point, and then verify.
*/
expected[0].is_dirty = FALSE;
expected[0].serialized = TRUE;
for (i = 1; i < 31; i++) {
expected[i].in_cache = FALSE;
expected[i].is_dirty = FALSE;
expected[i].destroyed = TRUE;
}
verify_entry_status(cache_ptr, 0, 32, expected);
}
}
/* restore the initial resize configuration */
if (pass) {
saved_auto_size_ctl.set_initial_size = TRUE;
saved_auto_size_ctl.initial_size = 2 * 1024 * 1024;
result = H5C_set_cache_auto_resize_config(cache_ptr, &saved_auto_size_ctl);
if (result != SUCCEED) {
pass = FALSE;
failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n";
}
}
/* flush the cache and end the test. */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush invalidate failed after flush op eviction test")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test";
}
}
#if H5C_COLLECT_CACHE_STATS
/* If we are collecting stats, check to see if we get the expected
* values.
*/
if (pass)
if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg =
"Unexpected monster entry stats in cedds__H5C__autoadjust__ageout__evict_aged_out_entries().";
} /* end if */
if (pass)
if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 1) ||
(cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg =
"unexpected scan restart stats in cedds__H5C__autoadjust__ageout__evict_aged_out_entries().";
} /* end if */
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass)
reset_entries();
if (pass)
/* reset cache min clean size to its expected value */
cache_ptr->min_clean_size = (1 * 1024 * 1024);
HDfree(expected);
} /* cedds__H5C__autoadjust__ageout__evict_aged_out_entries() */
/*-------------------------------------------------------------------------
* Function: cedds__H5C_flush_invalidate_cache__bucket_scan()
*
* Purpose: Note: We now use the index list when we scan the
* contents of the metadata cache, so in principal,
* this test is obsolete. However, even using the
* index list, restarts are possible, and must be
* handled gracefully.
*
* As it turns out, this test triggers index list
* scan restarts, and thus with minor changes is
* still a useful test.
*
* For this reason, with the exception of changing
* to check the index_scan_restart stat instead of
* hash bucket restarts, I'm leaving the test
* alone. If and when it starts to fail due to
* other changes, we can re-work it to test
* index list scan restarts explicitly.
*
* JRM -- 11/2/16
*
* Verify that H5C_flush_invalidate_cache() can handle
* the removal from the cache of the next item in
* its scans of hash buckets.
*
* !!!!!!!!!!WARNING !!!!!!!!!!
*
* This test may fail to function correctly if the hash
* table size or hash function is altered.
*
* To setup the test, this function depends on the fact that
* H5C_flush_invalidate_cache() does alternating scans of the
* slist and the index. If this changes, the test will likely
* also cease to function correctly.
*
* The test relies on a known hash function and hash table
* size to select a set of test entries that will all hash
* to the same hash bucket -- call it the test hash bucket.
* It also relies on known behavior of the cache to place
* the entries in the test bucket in a known order.
*
* To avoid pre-mature flushes of the entries in the
* test hash bucket, all entries are initially clean,
* with the exception of the first entry which is dirty.
* It avoids premature flushing by being the parent in
* a flush dependency. The first entry in the test bucket
* also has a flush op which expunges the second entry --
* setting up the failure.
*
* An additional dirty entry is added (which must hash
* to a different bucket, and must have a higher address
* than at least the first entry in the test hash bucket.
* This entry is the child in a flush dependency with the
* first entry in the above hash bucket, and contains
* a flush op to destroy this flush dependency.
*
* Since the first entry in the test hash bucket has a lower
* address that the other dirty entry, the scan of the
* slist encounters it first, and passes over it because
* it has a flush dependency height of 1.
*
* The scan then encounters the second dirty entry and flushes
* it -- causing it to destroy the flush dependency and thus
* reducing the flush dependency height of the first entry in
* the test hash bucket to zero.
*
* After completing a scan of the slist,
* H5C_flush_invalidate_cache() then scans the index,
* flushing all entries of flush dependency height zero.
*
* This sets up the potential error when the first entry
* in the test hash bucket is flushed -- expunging the
* second entry as a side effect. If
* H5C_flush_invalidate_cache() fails to detect this,
* it will attempt to continue its scan of the bucket with
* an entry that has been deleted from the cache.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/9/15
*
*-------------------------------------------------------------------------
*/
static void
cedds__H5C_flush_invalidate_cache__bucket_scan(H5F_t *file_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
int expected_hash_bucket = 0;
haddr_t entry_addr;
test_entry_t *entry_ptr;
test_entry_t *base_addr = NULL;
struct H5C_cache_entry_t *scan_ptr;
/* clang-format off */
struct expected_entry_status expected[5] =
{
/* the expected array is used to maintain a table of the expected status of every
* entry used in this test. Note that since the function that processes this
* array only processes as much of it as it is told to, we don't have to
* worry about maintaining the status of entries that we haven't used yet.
*/
/* entry entry in at main flush dep flush dep child flush flush flush */
/* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */
{ MONSTER_ENTRY_TYPE, 0, MONSTER_ENTRY_SIZE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 1, 1, -1, FALSE},
{ MONSTER_ENTRY_TYPE, 8, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ MONSTER_ENTRY_TYPE, 16, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ MONSTER_ENTRY_TYPE, 24, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE},
{ MONSTER_ENTRY_TYPE, 31, MONSTER_ENTRY_SIZE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, {MONSTER_ENTRY_TYPE,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 1, 0, 0, -1, FALSE},
};
/* clang-format on */
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg =
"cache_ptr NULL on entry to cedds for cedds__H5C_flush_invalidate_cache__bucket_scan() test.";
}
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg =
"cache not empty at start cedds for cedds__H5C_flush_invalidate_cache__bucket_scan() test.";
}
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of cedds "
"cedds__H5C_flush_invalidate_cache__bucket_scan() test.";
}
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
}
}
if (pass) {
/* reset the stats before we start. If stats are enabled, we will
* check to see if they are as expected at the end.
*/
H5C_stats__reset(cache_ptr);
/* load one dirty and three clean entries that should hash to the
* same hash bucket.
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG);
for (i = 8; i <= 24; i += 8) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
}
if (pass) {
/* verify that the above entries hash to the same bucket */
base_addr = entries[MONSTER_ENTRY_TYPE];
entry_ptr = &(base_addr[0]);
entry_addr = entry_ptr->header.addr;
HDassert(entry_addr == entry_ptr->addr);
expected_hash_bucket = H5C__HASH_FCN(entry_addr);
for (i = 8; i <= 24; i += 8) {
entry_ptr = &(base_addr[i]);
entry_addr = entry_ptr->header.addr;
if (expected_hash_bucket != H5C__HASH_FCN(entry_addr)) {
pass = FALSE;
failure_mssg = "Test entries don't map to same bucket -- hash table size or hash fcn change?";
}
}
}
if (pass) {
/* setup the expunge flush operation:
*
* (MET, 0) expunges (MET, 8)
*
*/
add_flush_op(MONSTER_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, MONSTER_ENTRY_TYPE, 8, FALSE, (size_t)0, NULL);
}
if (pass) {
/* load the entry that will have a flush dependency with (MET, 0),
* thus preventing it from being flushed on the first pass through
* the skip list.
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__DIRTIED_FLAG);
}
if (pass) {
/* verify that the dirty entry doesn't map to the same
* hash bucket as the clean entries.
*/
entry_ptr = &(base_addr[31]);
entry_addr = entry_ptr->header.addr;
if (expected_hash_bucket == H5C__HASH_FCN(entry_addr)) {
pass = FALSE;
failure_mssg = "Dirty entry maps to same hash bucket as clean entries?!?!";
}
}
if (pass) {
/* Next, create the flush dependency requiring (MET, 31) to
* be flushed prior to (MET, 0).
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0);
create_flush_dependency(MONSTER_ENTRY_TYPE, 0, MONSTER_ENTRY_TYPE, 31);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG);
}
if (pass) {
/* Then, setup the flush operation to take down the flush
* dependency when (MET, 31) is flushed.
*
* (MET, 31) destroys flush dependency with (MET, 8)
*
*/
add_flush_op(MONSTER_ENTRY_TYPE, 31, FLUSH_OP__DEST_FLUSH_DEP, MONSTER_ENTRY_TYPE, 0, FALSE,
(size_t)0, NULL);
}
if (pass) {
/* verify the expected status of all entries we have loaded to date: */
verify_entry_status(cache_ptr, 0, 5, expected);
}
if (pass) {
/* now do some protect / unprotect cycles to force the
* entries into the desired order in the hash bucket.
* Recall that entries are moved to the head of the
* hash bucket list on lookup.
*/
for (i = 24; i >= 0; i -= 8) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
}
}
if (pass) {
/* scan the hash bucket to verify that the expected entries appear
* in the expected order.
*/
scan_ptr = cache_ptr->index[expected_hash_bucket];
i = 0;
while (pass && (i <= 24)) {
entry_ptr = &(base_addr[i]);
if (scan_ptr == NULL) {
pass = FALSE;
failure_mssg = "premature end of hash bucket list?!?!";
}
else if ((scan_ptr == NULL) || (scan_ptr != &(entry_ptr->header))) {
pass = FALSE;
failure_mssg = "bad test hash bucket setup?!?!";
}
if (pass) {
scan_ptr = scan_ptr->ht_next;
i += 8;
}
}
}
/* test setup complete -- flush the cache to run and end the test. */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush invalidate failed after flush op eviction test")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test";
}
}
#if H5C_COLLECT_CACHE_STATS
/* If we are collecting stats, check to see if we get the expected
* values.
*/
if (pass)
if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 2) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 5) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg =
"Unexpected monster entry stats in cedds__H5C_flush_invalidate_cache__bucket_scan().";
} /* end if */
if (pass)
/* as this test is now checking for index list scan restarts,
* the following has been modified to check this instead of
* hash bucket scan restarts.
*/
if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) ||
(cache_ptr->index_scan_restarts != 1)) {
pass = FALSE;
failure_mssg =
"unexpected scan restart stats in cedds__H5C_flush_invalidate_cache__bucket_scan().";
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (pass)
reset_entries();
if (pass)
/* reset cache min clean size to its expected value */
cache_ptr->min_clean_size = (1 * 1024 * 1024);
} /* cedds__H5C_flush_invalidate_cache__bucket_scan() */
/*-------------------------------------------------------------------------
* Function: check_stats()
*
* Purpose: If stats are enabled, conduct tests to verify correct
* functioning of the cache statistics collection code.
*
* Skip the test if stats are not enabled.
*
* At present this test is a shell -- fill it out at time
* permits.
*
* Return: void
*
* Programmer: John Mainzer
* 4/12/15
*
*-------------------------------------------------------------------------
*/
static unsigned
check_stats(unsigned paged)
{
#if H5C_COLLECT_CACHE_STATS
H5F_t *file_ptr = NULL;
#endif /* H5C_COLLECT_CACHE_STATS */
if (paged)
TESTING("metadata cache statistics collection (paged aggregation)");
else
TESTING("metadata cache statistics collection");
#if H5C_COLLECT_CACHE_STATS
pass = TRUE;
reset_entries();
file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged);
if (pass) {
check_stats__smoke_check_1(file_ptr);
}
if (pass) {
takedown_cache(file_ptr, FALSE, FALSE);
}
if (pass) {
PASSED();
}
else {
H5_FAILED();
}
if (!pass) {
HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", __func__, failure_mssg);
}
#else /* H5C_COLLECT_CACHE_STATS */
SKIPPED();
HDfprintf(stdout, " Statistics collection disabled.\n");
#endif /* H5C_COLLECT_CACHE_STATS */
return (unsigned)!pass;
} /* check_stats() */
/*-------------------------------------------------------------------------
* Function: check_stats__smoke_check_1()
*
* Purpose: Test to see if the statistics collection code is working
* more or less as expected. Do this by performing a number
* of operations in the cache, and checking to verify that
* they result in the expected statistics.
*
* Note that this function is not intended to be a full test
* of the statistics collection facility -- only a cursory
* check that will serve as a place holder until more complete
* tests are implemented.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/22/15
*
*-------------------------------------------------------------------------
*/
#if H5C_COLLECT_CACHE_STATS
static void
check_stats__smoke_check_1(H5F_t *file_ptr)
{
H5C_t *cache_ptr = file_ptr->shared->cache;
int i;
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "cache_ptr NULL on entry to check_stats__smoke_check_1().";
} /* end if */
else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) {
pass = FALSE;
failure_mssg = "cache not empty on entry to check_stats__smoke_check_1().";
} /* end else-if */
else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) ||
(cache_ptr->min_clean_size != (1 * 1024 * 1024))) {
pass = FALSE;
failure_mssg = "unexpected cache config at start of check_stats__smoke_check_1().";
} /* end else-if */
else {
/* set min clean size to zero for this test as it simplifies
* computing the expected cache size after each operation.
*/
cache_ptr->min_clean_size = 0;
} /* end else */
} /* end if */
if (pass)
/* first fill the cache with monster entryies via insertion */
for (i = 0; i < 32; i++)
insert_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
if (pass)
if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(1).";
} /* end if */
if (pass) {
if ((cache_ptr->total_ht_insertions != 32) || (cache_ptr->total_ht_deletions != 0) ||
(cache_ptr->successful_ht_searches != 0) || (cache_ptr->total_successful_ht_search_depth != 0) ||
(cache_ptr->failed_ht_searches != 32) || (cache_ptr->total_failed_ht_search_depth != 48) ||
(cache_ptr->max_index_len != 32) || (cache_ptr->max_index_size != 2 * 1024 * 1024) ||
(cache_ptr->max_clean_index_size != 0) || (cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) ||
(cache_ptr->max_pl_len != 0) || (cache_ptr->max_pl_size != 0) || (cache_ptr->max_pel_len != 0) ||
(cache_ptr->max_pel_size != 0) || (cache_ptr->calls_to_msic != 0) ||
(cache_ptr->total_entries_skipped_in_msic != 0) ||
(cache_ptr->total_entries_scanned_in_msic != 0) ||
(cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 0) ||
(cache_ptr->entries_scanned_to_make_space != 0) || (cache_ptr->slist_scan_restarts != 0) ||
(cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(1).";
} /* end if */
}
#if H5C_COLLECT_CACHE_ENTRY_STATS
if (pass)
/* Note that most entry level stats are only updated on entry eviction */
if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1000000) || /* initial value */
(cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) ||
(cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(1).";
} /* end if */
#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */
if (pass)
/* protect and unprotect each entry once. Note
* that all entries are already dirty, as they
* entered the cache via insertion
*/
for (i = 0; i < 32; i++) {
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET);
} /* end for */
if (pass)
if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(2).";
} /* end if */
if (pass) {
if ((cache_ptr->total_ht_insertions != 32) || (cache_ptr->total_ht_deletions != 0) ||
(cache_ptr->successful_ht_searches != 32) ||
(cache_ptr->total_successful_ht_search_depth != 96) || (cache_ptr->failed_ht_searches != 32) ||
(cache_ptr->total_failed_ht_search_depth != 48) || (cache_ptr->max_index_len != 32) ||
(cache_ptr->max_index_size != 2 * 1024 * 1024) || (cache_ptr->max_clean_index_size != 0) ||
(cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) ||
(cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) ||
(cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) ||
(cache_ptr->calls_to_msic != 0) || (cache_ptr->total_entries_skipped_in_msic != 0) ||
(cache_ptr->total_entries_scanned_in_msic != 0) ||
(cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 0) ||
(cache_ptr->entries_scanned_to_make_space != 0) || (cache_ptr->slist_scan_restarts != 0) ||
(cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(2).";
} /* end if */
}
#if H5C_COLLECT_CACHE_ENTRY_STATS
if (pass)
/* Note that most entry level stats are only updated on entry eviction */
if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1000000) || /* initial value */
(cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) ||
(cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(2).";
} /* end if */
#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */
if (pass) {
/* protect and unprotect an entry that is not currently
* in the cache. Since the cache is full and all entries
* are dirty, this will force a flush of each entry, and
* the eviction of (MET, 0).
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 32);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 32, H5C__DIRTIED_FLAG);
} /* end if */
if (pass)
if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 33) ||
(cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(3).";
} /* end if */
if (pass) {
if ((cache_ptr->total_ht_insertions != 33) || (cache_ptr->total_ht_deletions != 1) ||
(cache_ptr->successful_ht_searches != 32) ||
(cache_ptr->total_successful_ht_search_depth != 96) || (cache_ptr->failed_ht_searches != 33) ||
(cache_ptr->total_failed_ht_search_depth != 52) || (cache_ptr->max_index_len != 32) ||
(cache_ptr->max_index_size != 2 * 1024 * 1024) ||
(cache_ptr->max_clean_index_size != 2 * 1024 * 1024) ||
(cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) ||
(cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) ||
(cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) ||
(cache_ptr->calls_to_msic != 1) || (cache_ptr->total_entries_skipped_in_msic != 0) ||
(cache_ptr->total_entries_scanned_in_msic != 33) ||
(cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 33) ||
(cache_ptr->entries_scanned_to_make_space != 33) || (cache_ptr->slist_scan_restarts != 0) ||
(cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(3).";
} /* end if */
}
#if H5C_COLLECT_CACHE_ENTRY_STATS
if (pass)
/* Note that most entry level stats are only updated on entry eviction */
if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) ||
(cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(3).";
} /* end if */
#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */
if (pass) {
/* protect and unprotect dirty (MET, 1), and then flush destroy
* the cache.
*/
protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1);
unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG);
} /* end if */
/* flush the cache to end the test and collect all entry stats */
if (pass) {
H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG,
"Cache flush invalidate failed in check_stats__smoke_check_1()")
if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) {
pass = FALSE;
failure_mssg = "Unexpected cache len/size after check_stats__smoke_check_1()";
} /* end else-if */
} /* end if */
if (pass)
if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 33) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 34) ||
(cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) ||
(cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 34) ||
(cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 33) ||
(cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(4).";
} /* end if */
if (pass) {
if ((cache_ptr->total_ht_insertions != 33) || (cache_ptr->total_ht_deletions != 33) ||
(cache_ptr->successful_ht_searches != 33) ||
(cache_ptr->total_successful_ht_search_depth != 99) || (cache_ptr->failed_ht_searches != 33) ||
(cache_ptr->total_failed_ht_search_depth != 52) || (cache_ptr->max_index_len != 32) ||
(cache_ptr->max_index_size != 2 * 1024 * 1024) ||
(cache_ptr->max_clean_index_size != 2 * 1024 * 1024) ||
(cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) ||
((cache_ptr->slist_enabled) &&
((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) ||
(cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) ||
(cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) ||
(cache_ptr->calls_to_msic != 1) || (cache_ptr->total_entries_skipped_in_msic != 0) ||
(cache_ptr->total_entries_scanned_in_msic != 33) ||
(cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 33) ||
(cache_ptr->entries_scanned_to_make_space != 33) || (cache_ptr->slist_scan_restarts != 0) ||
(cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) {
pass = FALSE;
failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(4).";
} /* end if */
}
#if H5C_COLLECT_CACHE_ENTRY_STATS
if (pass)
/* Note that most entry level stats are only updated on entry eviction */
if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 2) ||
(cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1) ||
(cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) ||
(cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 2) ||
(cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) ||
(cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) {
pass = FALSE;
failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(4).";
} /* end if */
#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */
if (pass)
reset_entries();
if (pass)
/* reset cache min clean size to its expected value */
cache_ptr->min_clean_size = (1 * 1024 * 1024);
} /* check_stats__smoke_check_1() */
#endif /* H5C_COLLECT_CACHE_STATS */
/* Call back functions: */
/*-------------------------------------------------------------------------
*
* Function: check_if_write_permitted
*
* Purpose: Determine if a write is permitted under the current
* circumstances, and set *write_permitted_ptr accordingly.
* As a general rule it is, but when we are running in parallel
* mode with collective I/O, we must ensure that a read cannot
* cause a write.
*
* In the event of failure, the value of *write_permitted_ptr
* is undefined.
*
* Return: Non-negative on success/Negative on failure.
*
* Programmer: John Mainzer, 5/15/04
*
*-------------------------------------------------------------------------
*/
static herr_t
check_write_permitted(const H5F_t H5_ATTR_UNUSED *f, hbool_t *write_permitted_ptr)
{
HDassert(write_permitted_ptr);
*write_permitted_ptr = write_permitted;
return (SUCCEED);
} /* check_write_permitted() */
/*****************************************************************************
*
* Function: setup_cache()
*
* Purpose: Open an HDF file. This will allocate an instance and
* initialize an associated instance of H5C_t. However,
* we want to test an instance of H5C_t, so allocate and
* initialize one with the file ID returned by the call to
* H5Fcreate(). Return a pointer to this instance of H5C_t.
*
* Observe that we open a HDF file because the cache now
* writes directly to file, and we need the file I/O facilities
* associated with the file.
*
* To avoid tripping on error check code, must allocate enough
* space in the file to hold all the test entries and their
* alternates. This is a little sticky, as the addresses of
* all the test entries are determined at compile time.
*
* Deal with this by choosing BASE_ADDR large enough that
* the base address of the allocate space will be less than
* or equal to BASE_ADDR, and then requesting an extra BASE_ADDR
* bytes, so we don't have to wory about exceeding the allocation.
*
* Return: Success: Ptr to H5C_t
*
* Failure: NULL
*
* Programmer: JRM -- 9/13/07
*
*****************************************************************************/
H5F_t *
setup_cache(size_t max_cache_size, size_t min_clean_size, unsigned paged)
{
char filename[512];
hbool_t show_progress = FALSE;
hbool_t verbose = TRUE;
int mile_stone = 1;
hid_t fid = -1;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5F_t *ret_val = NULL;
haddr_t actual_base_addr;
hid_t fapl_id = H5P_DEFAULT;
hid_t fcpl_id = H5P_DEFAULT;
if (show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
saved_fid = -1;
if (pass) {
if ((fcpl_id = H5Pcreate(H5P_FILE_CREATE)) == FAIL) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n";
}
}
if (pass && paged) {
/* Set up paged aggregation strategy */
if (H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, 1, (hsize_t)1) == FAIL) {
pass = FALSE;
failure_mssg = "H5Pset_file_space_strategy() failed.\n";
H5Pclose(fcpl_id);
fcpl_id = H5P_DEFAULT;
}
}
if (pass && paged) {
/* Set up file space page size to BASE_ADDR */
if (H5Pset_file_space_page_size(fcpl_id, (hsize_t)BASE_ADDR) == FAIL) {
pass = FALSE;
failure_mssg = "H5Pset_file_space_page_size() failed.\n";
H5Pclose(fcpl_id);
fcpl_id = H5P_DEFAULT;
}
}
if (pass)
saved_fcpl_id = fcpl_id;
/* setup the file name */
if (pass) {
if (NULL == h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename))) {
pass = FALSE;
failure_mssg = "h5_fixname() failed.\n";
}
}
if (show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass && try_core_file_driver) {
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == FAIL) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
else if (H5Pset_fapl_core(fapl_id, MAX_ADDR, FALSE) < 0) {
H5Pclose(fapl_id);
fapl_id = H5P_DEFAULT;
pass = FALSE;
failure_mssg = "H5P_set_fapl_core() failed.\n";
}
else if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl_id, fapl_id)) < 0) {
core_file_driver_failed = TRUE;
if (verbose)
HDfprintf(stdout, "%s: H5Fcreate() with CFD failed.\n", __func__);
}
else {
saved_fapl_id = fapl_id;
}
}
if (show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
/* if we either aren't using the core file driver, or a create
* with the core file driver failed, try again with a regular file.
* If this fails, we are cooked.
*/
if (pass && fid < 0) {
fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl_id, fapl_id);
saved_fid = fid;
if (fid < 0) {
pass = FALSE;
failure_mssg = "H5Fcreate() failed.";
if (verbose)
HDfprintf(stdout, "%s: H5Fcreate() failed.\n", __func__);
} /* end if */
} /* end if */
/* Push API context */
H5CX_push();
if (show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
HDassert(fid >= 0);
saved_fid = fid;
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
pass = FALSE;
failure_mssg = "H5Fflush() failed.";
if (verbose)
HDfprintf(stdout, "%s: H5Fflush() failed.\n", __func__);
}
else {
file_ptr = (H5F_t *)H5VL_object_verify(fid, H5I_FILE);
if (file_ptr == NULL) {
pass = FALSE;
failure_mssg = "Can't get file_ptr.";
if (verbose)
HDfprintf(stdout, "%s: H5Fflush() failed.\n", __func__);
}
}
}
if (show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* A bit of fancy footwork here:
*
* The call to H5Fcreate() allocates an instance of H5C_t,
* initializes it, and stores its address in f->shared->cache.
*
* We don't want to use this cache, as it has a bunch of extra
* initialization that may change over time, and in any case
* it will not in general be configured the way we want it.
*
* We used to deal with this problem by storing the file pointer
* in another instance of H5C_t, and then ignoring the original
* version. However, this strategy doesn't work any more, as
* we can't store the file pointer in the instance of H5C_t,
* and we have modified many cache routines to use a file
* pointer to look up the target cache.
*
* Thus we now make note of the address of the instance of
* H5C_t created by the call to H5Fcreate(), set
* file_ptr->shared->cache to NULL, call H5C_create()
* to allocate a new instance of H5C_t for test purposes,
* and store than new instance's address in
* file_ptr->shared->cache.
*
* On shut down, we call H5C_dest on our instance of H5C_t,
* set file_ptr->shared->cache to point to the original
* instance, and then close the file normally.
*/
HDassert(saved_cache == NULL);
saved_cache = file_ptr->shared->cache;
file_ptr->shared->cache = NULL;
cache_ptr = H5C_create(max_cache_size, min_clean_size, (NUMBER_OF_ENTRY_TYPES - 1), types,
check_write_permitted, TRUE, NULL, NULL);
file_ptr->shared->cache = cache_ptr;
}
if (show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
if (cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "H5C_create() failed.";
if (verbose)
HDfprintf(stdout, "%s: H5C_create() failed.\n", __func__);
}
else if (cache_ptr->magic != H5C__H5C_T_MAGIC) {
pass = FALSE;
failure_mssg = "Bad cache_ptr magic.";
if (verbose)
HDfprintf(stdout, "%s: Bad cache_ptr magic.\n", __func__);
}
}
if (show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) { /* allocate space for test entries */
actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, (hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR));
if (actual_base_addr == HADDR_UNDEF) {
pass = FALSE;
failure_mssg = "H5MF_alloc() failed.";
if (verbose)
HDfprintf(stdout, "%s: H5MF_alloc() failed.\n", __func__);
}
else if (actual_base_addr > BASE_ADDR) {
/* If this happens, must increase BASE_ADDR so that the
* actual_base_addr is <= BASE_ADDR. This should only happen
* if the size of the superblock is increase.
*/
pass = FALSE;
failure_mssg = "actual_base_addr > BASE_ADDR";
if (verbose)
HDfprintf(stdout, "%s: actual_base_addr > BASE_ADDR.\n", __func__);
}
saved_actual_base_addr = actual_base_addr;
}
if (show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
if (pass) {
/* Need to set this else all cache tests will fail */
cache_ptr->ignore_tags = TRUE;
H5C_stats__reset(cache_ptr);
ret_val = file_ptr;
}
if (show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n", __func__, mile_stone++, (int)pass);
return (ret_val);
} /* setup_cache() */
/*-------------------------------------------------------------------------
* Function: takedown_cache()
*
* Purpose: Flush the specified cache and destroy it. If requested,
* dump stats first. Then close and delete the associate
* file.
*
* If pass is FALSE, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 9/14/07
*
*-------------------------------------------------------------------------
*/
void
takedown_cache(H5F_t *file_ptr, hbool_t dump_stats, hbool_t dump_detailed_stats)
{
char filename[512];
if (file_ptr != NULL) {
H5C_t *cache_ptr = file_ptr->shared->cache;
if (dump_stats) {
H5C_stats(cache_ptr, "test cache", dump_detailed_stats);
}
if (H5C_prep_for_file_close(file_ptr) < 0) {
pass = FALSE;
failure_mssg = "unexpected failure of prep for file close.\n";
}
flush_cache(file_ptr, TRUE, FALSE, FALSE);
H5C_dest(file_ptr);
if (saved_cache != NULL) {
file_ptr->shared->cache = saved_cache;
saved_cache = NULL;
}
}
if (saved_fapl_id != H5P_DEFAULT) {
H5Pclose(saved_fapl_id);
saved_fapl_id = H5P_DEFAULT;
}
if (saved_fcpl_id != H5P_DEFAULT) {
H5Pclose(saved_fcpl_id);
saved_fcpl_id = H5P_DEFAULT;
}
if (saved_fid != -1) {
if (H5F_addr_defined(saved_actual_base_addr)) {
if (NULL == file_ptr) {
file_ptr = (H5F_t *)H5VL_object_verify(saved_fid, H5I_FILE);
HDassert(file_ptr);
}
H5MF_xfree(file_ptr, H5FD_MEM_DEFAULT, saved_actual_base_addr,
(hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR));
saved_actual_base_addr = HADDR_UNDEF;
}
if (H5Fclose(saved_fid) < 0) {
pass = FALSE;
failure_mssg = "couldn't close test file.";
}
else {
saved_fid = -1;
}
/* Pop API context */
H5CX_pop(FALSE);
if ((!try_core_file_driver) || (core_file_driver_failed)) {
if (h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = FALSE;
failure_mssg = "h5_fixname() failed.\n";
}
if (HDremove(filename) < 0) {
pass = FALSE;
failure_mssg = "couldn't delete test file.";
}
}
}
} /* takedown_cache() */
/*-------------------------------------------------------------------------
* Function: main
*
* Return: EXIT_SUCCESS/EXIT_FAILURE
*
* Programmer: John Mainzer
* 6/24/04
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned nerrs = 0;
unsigned paged;
int express_test;
H5open();
express_test = GetTestExpress();
HDprintf("=========================================\n");
HDprintf("Internal cache tests\n");
HDprintf(" express_test = %d\n", express_test);
HDprintf("=========================================\n");
if (!h5_using_default_driver(NULL)) {
HDputs(" -- SKIPPED for incompatible VFD --");
HDexit(EXIT_SUCCESS);
}
if (create_entry_arrays() < 0) {
HDprintf("ERROR: Unable to create entries arrays. Aborting.\n");
return EXIT_FAILURE;
} /* end if */
/* Test with paged aggregation enabled or not */
/* Each test will call setup_cache() which set up the file space strategy according to "paged" */
for (paged = FALSE; paged <= TRUE; paged++) {
if (paged) {
HDfprintf(stdout, "\n\nRe-running tests with paged aggregation:\n");
if (express_test > 0)
HDfprintf(stdout, " Skipping smoke checks.\n");
HDfprintf(stdout, "\n");
}
nerrs += smoke_check_1(express_test, paged);
nerrs += smoke_check_2(express_test, paged);
nerrs += smoke_check_3(express_test, paged);
nerrs += smoke_check_4(express_test, paged);
nerrs += smoke_check_5(express_test, paged);
nerrs += smoke_check_6(express_test, paged);
nerrs += smoke_check_7(express_test, paged);
nerrs += smoke_check_8(express_test, paged);
nerrs += smoke_check_9(express_test, paged);
nerrs += smoke_check_10(express_test, paged);
nerrs += write_permitted_check(express_test, paged);
nerrs += check_insert_entry(paged);
nerrs += check_flush_cache(paged);
nerrs += check_get_entry_status(paged);
nerrs += check_expunge_entry(paged);
nerrs += check_multiple_read_protect(paged);
nerrs += check_move_entry(paged);
nerrs += check_pin_protected_entry(paged);
nerrs += check_resize_entry(paged);
nerrs += check_evictions_enabled(paged);
nerrs += check_flush_protected_err(paged);
nerrs += check_destroy_pinned_err(paged);
nerrs += check_destroy_protected_err(paged);
nerrs += check_duplicate_insert_err(paged);
nerrs += check_double_pin_err(paged);
nerrs += check_double_unpin_err(paged);
nerrs += check_pin_entry_errs(paged);
nerrs += check_double_protect_err(paged);
nerrs += check_double_unprotect_err(paged);
nerrs += check_mark_entry_dirty_errs(paged);
nerrs += check_expunge_entry_errs(paged);
nerrs += check_move_entry_errs(paged);
nerrs += check_resize_entry_errs(paged);
nerrs += check_unprotect_ro_dirty_err(paged);
nerrs += check_protect_ro_rw_err(paged);
nerrs += check_protect_retries(paged);
nerrs += check_check_evictions_enabled_err(paged);
nerrs += check_auto_cache_resize(FALSE, paged);
nerrs += check_auto_cache_resize(TRUE, paged);
nerrs += check_auto_cache_resize_disable(paged);
nerrs += check_auto_cache_resize_epoch_markers(paged);
nerrs += check_auto_cache_resize_input_errs(paged);
nerrs += check_auto_cache_resize_aux_fcns(paged);
nerrs += check_metadata_blizzard_absence(TRUE, paged);
nerrs += check_metadata_blizzard_absence(FALSE, paged);
nerrs += check_flush_deps(paged);
nerrs += check_flush_deps_err(paged);
nerrs += check_flush_deps_order(paged);
nerrs += check_notify_cb(paged);
nerrs += check_metadata_cork(TRUE, paged);
nerrs += check_metadata_cork(FALSE, paged);
nerrs += check_entry_deletions_during_scans(paged);
nerrs += check_stats(paged);
} /* end for */
/* can't fail, returns void */
free_entry_arrays();
if (nerrs > 0)
return EXIT_FAILURE;
else
return EXIT_SUCCESS;
} /* main() */