You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
4.3 KiB
163 lines
4.3 KiB
2 years ago
|
*> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLAEV2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claev2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claev2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claev2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* REAL CS1, RT1, RT2
|
||
|
* COMPLEX A, B, C, SN1
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
|
||
|
*> [ A B ]
|
||
|
*> [ CONJG(B) C ].
|
||
|
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
|
||
|
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
|
||
|
*> eigenvector for RT1, giving the decomposition
|
||
|
*>
|
||
|
*> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
|
||
|
*> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX
|
||
|
*> The (1,1) element of the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX
|
||
|
*> The (1,2) element and the conjugate of the (2,1) element of
|
||
|
*> the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] C
|
||
|
*> \verbatim
|
||
|
*> C is COMPLEX
|
||
|
*> The (2,2) element of the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RT1
|
||
|
*> \verbatim
|
||
|
*> RT1 is REAL
|
||
|
*> The eigenvalue of larger absolute value.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RT2
|
||
|
*> \verbatim
|
||
|
*> RT2 is REAL
|
||
|
*> The eigenvalue of smaller absolute value.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CS1
|
||
|
*> \verbatim
|
||
|
*> CS1 is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SN1
|
||
|
*> \verbatim
|
||
|
*> SN1 is COMPLEX
|
||
|
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> RT1 is accurate to a few ulps barring over/underflow.
|
||
|
*>
|
||
|
*> RT2 may be inaccurate if there is massive cancellation in the
|
||
|
*> determinant A*C-B*B; higher precision or correctly rounded or
|
||
|
*> correctly truncated arithmetic would be needed to compute RT2
|
||
|
*> accurately in all cases.
|
||
|
*>
|
||
|
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
|
||
|
*>
|
||
|
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
|
||
|
*> Underflow is harmless if the input data is 0 or exceeds
|
||
|
*> underflow_threshold / macheps.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
REAL CS1, RT1, RT2
|
||
|
COMPLEX A, B, C, SN1
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO
|
||
|
PARAMETER ( ZERO = 0.0E0 )
|
||
|
REAL ONE
|
||
|
PARAMETER ( ONE = 1.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
REAL T
|
||
|
COMPLEX W
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SLAEV2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, CONJG, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( ABS( B ).EQ.ZERO ) THEN
|
||
|
W = ONE
|
||
|
ELSE
|
||
|
W = CONJG( B ) / ABS( B )
|
||
|
END IF
|
||
|
CALL SLAEV2( REAL( A ), ABS( B ), REAL( C ), RT1, RT2, CS1, T )
|
||
|
SN1 = W*T
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLAEV2
|
||
|
*
|
||
|
END
|