You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
377 lines
11 KiB
377 lines
11 KiB
2 years ago
|
*> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLARRJ + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
|
||
|
* RTOL, OFFSET, W, WERR, WORK, IWORK,
|
||
|
* PIVMIN, SPDIAM, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IFIRST, ILAST, INFO, N, OFFSET
|
||
|
* DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* DOUBLE PRECISION D( * ), E2( * ), W( * ),
|
||
|
* $ WERR( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> Given the initial eigenvalue approximations of T, DLARRJ
|
||
|
*> does bisection to refine the eigenvalues of T,
|
||
|
*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
|
||
|
*> guesses for these eigenvalues are input in W, the corresponding estimate
|
||
|
*> of the error in these guesses in WERR. During bisection, intervals
|
||
|
*> [left, right] are maintained by storing their mid-points and
|
||
|
*> semi-widths in the arrays W and WERR respectively.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The N diagonal elements of T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E2
|
||
|
*> \verbatim
|
||
|
*> E2 is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> The Squares of the (N-1) subdiagonal elements of T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IFIRST
|
||
|
*> \verbatim
|
||
|
*> IFIRST is INTEGER
|
||
|
*> The index of the first eigenvalue to be computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ILAST
|
||
|
*> \verbatim
|
||
|
*> ILAST is INTEGER
|
||
|
*> The index of the last eigenvalue to be computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RTOL
|
||
|
*> \verbatim
|
||
|
*> RTOL is DOUBLE PRECISION
|
||
|
*> Tolerance for the convergence of the bisection intervals.
|
||
|
*> An interval [LEFT,RIGHT] has converged if
|
||
|
*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] OFFSET
|
||
|
*> \verbatim
|
||
|
*> OFFSET is INTEGER
|
||
|
*> Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
|
||
|
*> through ILAST-OFFSET elements of these arrays are to be used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] W
|
||
|
*> \verbatim
|
||
|
*> W is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
|
||
|
*> estimates of the eigenvalues of L D L^T indexed IFIRST through
|
||
|
*> ILAST.
|
||
|
*> On output, these estimates are refined.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] WERR
|
||
|
*> \verbatim
|
||
|
*> WERR is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
|
||
|
*> the errors in the estimates of the corresponding elements in W.
|
||
|
*> On output, these errors are refined.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (2*N)
|
||
|
*> Workspace.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (2*N)
|
||
|
*> Workspace.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] PIVMIN
|
||
|
*> \verbatim
|
||
|
*> PIVMIN is DOUBLE PRECISION
|
||
|
*> The minimum pivot in the Sturm sequence for T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SPDIAM
|
||
|
*> \verbatim
|
||
|
*> SPDIAM is DOUBLE PRECISION
|
||
|
*> The spectral diameter of T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> Error flag.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
||
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
||
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
||
|
*> Osni Marques, LBNL/NERSC, USA \n
|
||
|
*> Christof Voemel, University of California, Berkeley, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
|
||
|
$ RTOL, OFFSET, W, WERR, WORK, IWORK,
|
||
|
$ PIVMIN, SPDIAM, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IFIRST, ILAST, INFO, N, OFFSET
|
||
|
DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
DOUBLE PRECISION D( * ), E2( * ), W( * ),
|
||
|
$ WERR( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE, TWO, HALF
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
|
||
|
$ HALF = 0.5D0 )
|
||
|
INTEGER MAXITR
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
|
||
|
$ OLNINT, P, PREV, SAVI1
|
||
|
DOUBLE PRECISION DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
|
||
|
*
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
|
||
|
$ LOG( TWO ) ) + 2
|
||
|
*
|
||
|
* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
|
||
|
* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
|
||
|
* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
|
||
|
* for an unconverged interval is set to the index of the next unconverged
|
||
|
* interval, and is -1 or 0 for a converged interval. Thus a linked
|
||
|
* list of unconverged intervals is set up.
|
||
|
*
|
||
|
|
||
|
I1 = IFIRST
|
||
|
I2 = ILAST
|
||
|
* The number of unconverged intervals
|
||
|
NINT = 0
|
||
|
* The last unconverged interval found
|
||
|
PREV = 0
|
||
|
DO 75 I = I1, I2
|
||
|
K = 2*I
|
||
|
II = I - OFFSET
|
||
|
LEFT = W( II ) - WERR( II )
|
||
|
MID = W(II)
|
||
|
RIGHT = W( II ) + WERR( II )
|
||
|
WIDTH = RIGHT - MID
|
||
|
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
|
||
|
|
||
|
* The following test prevents the test of converged intervals
|
||
|
IF( WIDTH.LT.RTOL*TMP ) THEN
|
||
|
* This interval has already converged and does not need refinement.
|
||
|
* (Note that the gaps might change through refining the
|
||
|
* eigenvalues, however, they can only get bigger.)
|
||
|
* Remove it from the list.
|
||
|
IWORK( K-1 ) = -1
|
||
|
* Make sure that I1 always points to the first unconverged interval
|
||
|
IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
|
||
|
IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
|
||
|
ELSE
|
||
|
* unconverged interval found
|
||
|
PREV = I
|
||
|
* Make sure that [LEFT,RIGHT] contains the desired eigenvalue
|
||
|
*
|
||
|
* Do while( CNT(LEFT).GT.I-1 )
|
||
|
*
|
||
|
FAC = ONE
|
||
|
20 CONTINUE
|
||
|
CNT = 0
|
||
|
S = LEFT
|
||
|
DPLUS = D( 1 ) - S
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
DO 30 J = 2, N
|
||
|
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
30 CONTINUE
|
||
|
IF( CNT.GT.I-1 ) THEN
|
||
|
LEFT = LEFT - WERR( II )*FAC
|
||
|
FAC = TWO*FAC
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
*
|
||
|
* Do while( CNT(RIGHT).LT.I )
|
||
|
*
|
||
|
FAC = ONE
|
||
|
50 CONTINUE
|
||
|
CNT = 0
|
||
|
S = RIGHT
|
||
|
DPLUS = D( 1 ) - S
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
DO 60 J = 2, N
|
||
|
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
60 CONTINUE
|
||
|
IF( CNT.LT.I ) THEN
|
||
|
RIGHT = RIGHT + WERR( II )*FAC
|
||
|
FAC = TWO*FAC
|
||
|
GO TO 50
|
||
|
END IF
|
||
|
NINT = NINT + 1
|
||
|
IWORK( K-1 ) = I + 1
|
||
|
IWORK( K ) = CNT
|
||
|
END IF
|
||
|
WORK( K-1 ) = LEFT
|
||
|
WORK( K ) = RIGHT
|
||
|
75 CONTINUE
|
||
|
|
||
|
|
||
|
SAVI1 = I1
|
||
|
*
|
||
|
* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
|
||
|
* and while (ITER.LT.MAXITR)
|
||
|
*
|
||
|
ITER = 0
|
||
|
80 CONTINUE
|
||
|
PREV = I1 - 1
|
||
|
I = I1
|
||
|
OLNINT = NINT
|
||
|
|
||
|
DO 100 P = 1, OLNINT
|
||
|
K = 2*I
|
||
|
II = I - OFFSET
|
||
|
NEXT = IWORK( K-1 )
|
||
|
LEFT = WORK( K-1 )
|
||
|
RIGHT = WORK( K )
|
||
|
MID = HALF*( LEFT + RIGHT )
|
||
|
|
||
|
* semiwidth of interval
|
||
|
WIDTH = RIGHT - MID
|
||
|
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
|
||
|
|
||
|
IF( ( WIDTH.LT.RTOL*TMP ) .OR.
|
||
|
$ (ITER.EQ.MAXITR) )THEN
|
||
|
* reduce number of unconverged intervals
|
||
|
NINT = NINT - 1
|
||
|
* Mark interval as converged.
|
||
|
IWORK( K-1 ) = 0
|
||
|
IF( I1.EQ.I ) THEN
|
||
|
I1 = NEXT
|
||
|
ELSE
|
||
|
* Prev holds the last unconverged interval previously examined
|
||
|
IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
|
||
|
END IF
|
||
|
I = NEXT
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
PREV = I
|
||
|
*
|
||
|
* Perform one bisection step
|
||
|
*
|
||
|
CNT = 0
|
||
|
S = MID
|
||
|
DPLUS = D( 1 ) - S
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
DO 90 J = 2, N
|
||
|
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
|
||
|
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
|
||
|
90 CONTINUE
|
||
|
IF( CNT.LE.I-1 ) THEN
|
||
|
WORK( K-1 ) = MID
|
||
|
ELSE
|
||
|
WORK( K ) = MID
|
||
|
END IF
|
||
|
I = NEXT
|
||
|
|
||
|
100 CONTINUE
|
||
|
ITER = ITER + 1
|
||
|
* do another loop if there are still unconverged intervals
|
||
|
* However, in the last iteration, all intervals are accepted
|
||
|
* since this is the best we can do.
|
||
|
IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
|
||
|
*
|
||
|
*
|
||
|
* At this point, all the intervals have converged
|
||
|
DO 110 I = SAVI1, ILAST
|
||
|
K = 2*I
|
||
|
II = I - OFFSET
|
||
|
* All intervals marked by '0' have been refined.
|
||
|
IF( IWORK( K-1 ).EQ.0 ) THEN
|
||
|
W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
|
||
|
WERR( II ) = WORK( K ) - W( II )
|
||
|
END IF
|
||
|
110 CONTINUE
|
||
|
*
|
||
|
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLARRJ
|
||
|
*
|
||
|
END
|