You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
3.8 KiB
163 lines
3.8 KiB
2 years ago
|
!> \brief \b DLARTG generates a plane rotation with real cosine and real sine.
|
||
|
!
|
||
|
! =========== DOCUMENTATION ===========
|
||
|
!
|
||
|
! Online html documentation available at
|
||
|
! http://www.netlib.org/lapack/explore-html/
|
||
|
!
|
||
|
! Definition:
|
||
|
! ===========
|
||
|
!
|
||
|
! SUBROUTINE DLARTG( F, G, C, S, R )
|
||
|
!
|
||
|
! .. Scalar Arguments ..
|
||
|
! REAL(wp) C, F, G, R, S
|
||
|
! ..
|
||
|
!
|
||
|
!> \par Purpose:
|
||
|
! =============
|
||
|
!>
|
||
|
!> \verbatim
|
||
|
!>
|
||
|
!> DLARTG generates a plane rotation so that
|
||
|
!>
|
||
|
!> [ C S ] . [ F ] = [ R ]
|
||
|
!> [ -S C ] [ G ] [ 0 ]
|
||
|
!>
|
||
|
!> where C**2 + S**2 = 1.
|
||
|
!>
|
||
|
!> The mathematical formulas used for C and S are
|
||
|
!> R = sign(F) * sqrt(F**2 + G**2)
|
||
|
!> C = F / R
|
||
|
!> S = G / R
|
||
|
!> Hence C >= 0. The algorithm used to compute these quantities
|
||
|
!> incorporates scaling to avoid overflow or underflow in computing the
|
||
|
!> square root of the sum of squares.
|
||
|
!>
|
||
|
!> This version is discontinuous in R at F = 0 but it returns the same
|
||
|
!> C and S as ZLARTG for complex inputs (F,0) and (G,0).
|
||
|
!>
|
||
|
!> This is a more accurate version of the BLAS1 routine DROTG,
|
||
|
!> with the following other differences:
|
||
|
!> F and G are unchanged on return.
|
||
|
!> If G=0, then C=1 and S=0.
|
||
|
!> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any
|
||
|
!> floating point operations (saves work in DBDSQR when
|
||
|
!> there are zeros on the diagonal).
|
||
|
!>
|
||
|
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
! Arguments:
|
||
|
! ==========
|
||
|
!
|
||
|
!> \param[in] F
|
||
|
!> \verbatim
|
||
|
!> F is REAL(wp)
|
||
|
!> The first component of vector to be rotated.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[in] G
|
||
|
!> \verbatim
|
||
|
!> G is REAL(wp)
|
||
|
!> The second component of vector to be rotated.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[out] C
|
||
|
!> \verbatim
|
||
|
!> C is REAL(wp)
|
||
|
!> The cosine of the rotation.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[out] S
|
||
|
!> \verbatim
|
||
|
!> S is REAL(wp)
|
||
|
!> The sine of the rotation.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[out] R
|
||
|
!> \verbatim
|
||
|
!> R is REAL(wp)
|
||
|
!> The nonzero component of the rotated vector.
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
! Authors:
|
||
|
! ========
|
||
|
!
|
||
|
!> \author Edward Anderson, Lockheed Martin
|
||
|
!
|
||
|
!> \date July 2016
|
||
|
!
|
||
|
!> \ingroup OTHERauxiliary
|
||
|
!
|
||
|
!> \par Contributors:
|
||
|
! ==================
|
||
|
!>
|
||
|
!> Weslley Pereira, University of Colorado Denver, USA
|
||
|
!
|
||
|
!> \par Further Details:
|
||
|
! =====================
|
||
|
!>
|
||
|
!> \verbatim
|
||
|
!>
|
||
|
!> Anderson E. (2017)
|
||
|
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
|
||
|
!> ACM Trans Math Softw 44:1--28
|
||
|
!> https://doi.org/10.1145/3061665
|
||
|
!>
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
subroutine DLARTG( f, g, c, s, r )
|
||
|
use LA_CONSTANTS, &
|
||
|
only: wp=>dp, zero=>dzero, half=>dhalf, one=>done, &
|
||
|
safmin=>dsafmin, safmax=>dsafmax
|
||
|
!
|
||
|
! -- LAPACK auxiliary routine --
|
||
|
! -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
! February 2021
|
||
|
!
|
||
|
! .. Scalar Arguments ..
|
||
|
real(wp) :: c, f, g, r, s
|
||
|
! ..
|
||
|
! .. Local Scalars ..
|
||
|
real(wp) :: d, f1, fs, g1, gs, u, rtmin, rtmax
|
||
|
! ..
|
||
|
! .. Intrinsic Functions ..
|
||
|
intrinsic :: abs, sign, sqrt
|
||
|
! ..
|
||
|
! .. Constants ..
|
||
|
rtmin = sqrt( safmin )
|
||
|
rtmax = sqrt( safmax/2 )
|
||
|
! ..
|
||
|
! .. Executable Statements ..
|
||
|
!
|
||
|
f1 = abs( f )
|
||
|
g1 = abs( g )
|
||
|
if( g == zero ) then
|
||
|
c = one
|
||
|
s = zero
|
||
|
r = f
|
||
|
else if( f == zero ) then
|
||
|
c = zero
|
||
|
s = sign( one, g )
|
||
|
r = g1
|
||
|
else if( f1 > rtmin .and. f1 < rtmax .and. &
|
||
|
g1 > rtmin .and. g1 < rtmax ) then
|
||
|
d = sqrt( f*f + g*g )
|
||
|
c = f1 / d
|
||
|
r = sign( d, f )
|
||
|
s = g / r
|
||
|
else
|
||
|
u = min( safmax, max( safmin, f1, g1 ) )
|
||
|
fs = f / u
|
||
|
gs = g / u
|
||
|
d = sqrt( fs*fs + gs*gs )
|
||
|
c = abs( fs ) / d
|
||
|
r = sign( d, f )
|
||
|
s = gs / r
|
||
|
r = r*u
|
||
|
end if
|
||
|
return
|
||
|
end subroutine
|