You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
5.6 KiB
216 lines
5.6 KiB
2 years ago
|
*> \brief \b ZBDT05
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
|
||
|
* VT, LDVT, WORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDU, LDVT, N, NS
|
||
|
* DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION S( * )
|
||
|
* COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
|
||
|
*> S = U' * B * V
|
||
|
*> where U and V are orthogonal matrices and S is diagonal.
|
||
|
*>
|
||
|
*> The test ratio to test the singular value decomposition is
|
||
|
*> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
|
||
|
*> where VT = V' and EPS is the machine precision.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrices A and U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices A and VT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The m by n matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] S
|
||
|
*> \verbatim
|
||
|
*> S is DOUBLE PRECISION array, dimension (NS)
|
||
|
*> The singular values from the (partial) SVD of B, sorted in
|
||
|
*> decreasing order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NS
|
||
|
*> \verbatim
|
||
|
*> NS is INTEGER
|
||
|
*> The number of singular values/vectors from the (partial)
|
||
|
*> SVD of B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is COMPLEX*16 array, dimension (LDU,NS)
|
||
|
*> The n by ns orthogonal matrix U in S = U' * B * V.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of the array U. LDU >= max(1,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VT
|
||
|
*> \verbatim
|
||
|
*> VT is COMPLEX*16 array, dimension (LDVT,N)
|
||
|
*> The n by ns orthogonal matrix V in S = U' * B * V.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVT
|
||
|
*> \verbatim
|
||
|
*> LDVT is INTEGER
|
||
|
*> The leading dimension of the array VT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (M,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is DOUBLE PRECISION
|
||
|
*> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
|
||
|
$ VT, LDVT, WORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDU, LDVT, M, N, NS
|
||
|
DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION S( * )
|
||
|
COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* ======================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
DOUBLE PRECISION ANORM, EPS
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
DOUBLE PRECISION DUM( 1 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER IDAMAX
|
||
|
DOUBLE PRECISION DASUM, DZASUM, DLAMCH, ZLANGE
|
||
|
EXTERNAL LSAME, IDAMAX, DASUM, DZASUM, DLAMCH, ZLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZGEMM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
EPS = DLAMCH( 'Precision' )
|
||
|
ANORM = ZLANGE( 'M', M, N, A, LDA, DUM )
|
||
|
*
|
||
|
* Compute U' * A * V.
|
||
|
*
|
||
|
CALL ZGEMM( 'N', 'C', M, NS, N, CONE, A, LDA, VT,
|
||
|
$ LDVT, CZERO, WORK( 1+NS*NS ), M )
|
||
|
CALL ZGEMM( 'C', 'N', NS, NS, M, -CONE, U, LDU, WORK( 1+NS*NS ),
|
||
|
$ M, CZERO, WORK, NS )
|
||
|
*
|
||
|
* norm(S - U' * B * V)
|
||
|
*
|
||
|
J = 0
|
||
|
DO 10 I = 1, NS
|
||
|
WORK( J+I ) = WORK( J+I ) + DCMPLX( S( I ), ZERO )
|
||
|
RESID = MAX( RESID, DZASUM( NS, WORK( J+1 ), 1 ) )
|
||
|
J = J + NS
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
IF( ANORM.GE.RESID ) THEN
|
||
|
RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
|
||
|
ELSE
|
||
|
IF( ANORM.LT.ONE ) THEN
|
||
|
RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
|
||
|
$ ( DBLE( N )*EPS )
|
||
|
ELSE
|
||
|
RESID = MIN( RESID / ANORM, DBLE( N ) ) /
|
||
|
$ ( DBLE( N )*EPS )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZBDT05
|
||
|
*
|
||
|
END
|