Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

557 lines
17 KiB

2 years ago
*> \brief \b CCHKGT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
* A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NN, NNS, NOUT
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
* REAL RWORK( * )
* COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
* $ XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCHKGT tests CGTTRF, -TRS, -RFS, and -CON
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension
*> (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension
*> (max(NMAX)+2*NSMAX)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NN, NNS, NOUT
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
REAL RWORK( * )
COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
$ XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 12 )
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
* ..
* .. Local Scalars ..
LOGICAL TRFCON, ZEROT
CHARACTER DIST, NORM, TRANS, TYPE
CHARACTER*3 PATH
INTEGER I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
$ K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
$ NIMAT, NRHS, NRUN
REAL AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
$ RCONDO
* ..
* .. Local Arrays ..
CHARACTER TRANSS( 3 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
REAL RESULT( NTESTS )
COMPLEX Z( 3 )
* ..
* .. External Functions ..
REAL CLANGT, SCASUM, SGET06
EXTERNAL CLANGT, SCASUM, SGET06
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, CCOPY, CERRGE, CGET04,
$ CGTCON, CGTRFS, CGTT01, CGTT02, CGTT05, CGTTRF,
$ CGTTRS, CLACPY, CLAGTM, CLARNV, CLATB4, CLATMS,
$ CSSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
$ 'C' /
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'GT'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL CERRGE( PATH, NOUT )
INFOT = 0
*
DO 110 IN = 1, NN
*
* Do for each value of N in NVAL.
*
N = NVAL( IN )
M = MAX( N-1, 0 )
LDA = MAX( 1, N )
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 100 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 100
*
* Set up parameters with CLATB4.
*
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ COND, DIST )
*
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
IF( IMAT.LE.6 ) THEN
*
* Types 1-6: generate matrices of known condition number.
*
KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
SRNAMT = 'CLATMS'
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
$ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
$ INFO )
*
* Check the error code from CLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 100
END IF
IZERO = 0
*
IF( N.GT.1 ) THEN
CALL CCOPY( N-1, AF( 4 ), 3, A, 1 )
CALL CCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
END IF
CALL CCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
ELSE
*
* Types 7-12: generate tridiagonal matrices with
* unknown condition numbers.
*
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
*
* Generate a matrix with elements whose real and
* imaginary parts are from [-1,1].
*
CALL CLARNV( 2, ISEED, N+2*M, A )
IF( ANORM.NE.ONE )
$ CALL CSSCAL( N+2*M, ANORM, A, 1 )
ELSE IF( IZERO.GT.0 ) THEN
*
* Reuse the last matrix by copying back the zeroed out
* elements.
*
IF( IZERO.EQ.1 ) THEN
A( N ) = Z( 2 )
IF( N.GT.1 )
$ A( 1 ) = Z( 3 )
ELSE IF( IZERO.EQ.N ) THEN
A( 3*N-2 ) = Z( 1 )
A( 2*N-1 ) = Z( 2 )
ELSE
A( 2*N-2+IZERO ) = Z( 1 )
A( N-1+IZERO ) = Z( 2 )
A( IZERO ) = Z( 3 )
END IF
END IF
*
* If IMAT > 7, set one column of the matrix to 0.
*
IF( .NOT.ZEROT ) THEN
IZERO = 0
ELSE IF( IMAT.EQ.8 ) THEN
IZERO = 1
Z( 2 ) = A( N )
A( N ) = ZERO
IF( N.GT.1 ) THEN
Z( 3 ) = A( 1 )
A( 1 ) = ZERO
END IF
ELSE IF( IMAT.EQ.9 ) THEN
IZERO = N
Z( 1 ) = A( 3*N-2 )
Z( 2 ) = A( 2*N-1 )
A( 3*N-2 ) = ZERO
A( 2*N-1 ) = ZERO
ELSE
IZERO = ( N+1 ) / 2
DO 20 I = IZERO, N - 1
A( 2*N-2+I ) = ZERO
A( N-1+I ) = ZERO
A( I ) = ZERO
20 CONTINUE
A( 3*N-2 ) = ZERO
A( 2*N-1 ) = ZERO
END IF
END IF
*
*+ TEST 1
* Factor A as L*U and compute the ratio
* norm(L*U - A) / (n * norm(A) * EPS )
*
CALL CCOPY( N+2*M, A, 1, AF, 1 )
SRNAMT = 'CGTTRF'
CALL CGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
$ IWORK, INFO )
*
* Check error code from CGTTRF.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'CGTTRF', INFO, IZERO, ' ', N, N, 1,
$ 1, -1, IMAT, NFAIL, NERRS, NOUT )
TRFCON = INFO.NE.0
*
CALL CGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
$ RWORK, RESULT( 1 ) )
*
* Print the test ratio if it is .GE. THRESH.
*
IF( RESULT( 1 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
*
DO 50 ITRAN = 1, 2
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
NORM = 'O'
ELSE
NORM = 'I'
END IF
ANORM = CLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
*
IF( .NOT.TRFCON ) THEN
*
* Use CGTTRS to solve for one column at a time of
* inv(A), computing the maximum column sum as we go.
*
AINVNM = ZERO
DO 40 I = 1, N
DO 30 J = 1, N
X( J ) = ZERO
30 CONTINUE
X( I ) = ONE
CALL CGTTRS( TRANS, N, 1, AF, AF( M+1 ),
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
$ LDA, INFO )
AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
40 CONTINUE
*
* Compute RCONDC = 1 / (norm(A) * norm(inv(A))
*
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDC = ONE
ELSE
RCONDC = ( ONE / ANORM ) / AINVNM
END IF
IF( ITRAN.EQ.1 ) THEN
RCONDO = RCONDC
ELSE
RCONDI = RCONDC
END IF
ELSE
RCONDC = ZERO
END IF
*
*+ TEST 7
* Estimate the reciprocal of the condition number of the
* matrix.
*
SRNAMT = 'CGTCON'
CALL CGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
$ AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
$ INFO )
*
* Check error code from CGTCON.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGTCON', INFO, 0, NORM, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
RESULT( 7 ) = SGET06( RCOND, RCONDC )
*
* Print the test ratio if it is .GE. THRESH.
*
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
$ RESULT( 7 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
50 CONTINUE
*
* Skip the remaining tests if the matrix is singular.
*
IF( TRFCON )
$ GO TO 100
*
DO 90 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
* Generate NRHS random solution vectors.
*
IX = 1
DO 60 J = 1, NRHS
CALL CLARNV( 2, ISEED, N, XACT( IX ) )
IX = IX + LDA
60 CONTINUE
*
DO 80 ITRAN = 1, 3
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
ELSE
RCONDC = RCONDI
END IF
*
* Set the right hand side.
*
CALL CLAGTM( TRANS, N, NRHS, ONE, A,
$ A( M+1 ), A( N+M+1 ), XACT, LDA,
$ ZERO, B, LDA )
*
*+ TEST 2
* Solve op(A) * X = B and compute the residual.
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
SRNAMT = 'CGTTRS'
CALL CGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
$ LDA, INFO )
*
* Check error code from CGTTRS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGTTRS', INFO, 0, TRANS, N, N,
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL CGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
$ X, LDA, WORK, LDA, RESULT( 2 ) )
*
*+ TEST 3
* Check solution from generated exact solution.
*
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
*
*+ TESTS 4, 5, and 6
* Use iterative refinement to improve the solution.
*
SRNAMT = 'CGTRFS'
CALL CGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
$ AF, AF( M+1 ), AF( N+M+1 ),
$ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
$ RWORK, RWORK( NRHS+1 ), WORK,
$ RWORK( 2*NRHS+1 ), INFO )
*
* Check error code from CGTRFS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGTRFS', INFO, 0, TRANS, N, N,
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 4 ) )
CALL CGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
$ B, LDA, X, LDA, XACT, LDA, RWORK,
$ RWORK( NRHS+1 ), RESULT( 5 ) )
*
* Print information about the tests that did not pass the
* threshold.
*
DO 70 K = 2, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
70 CONTINUE
NRUN = NRUN + 5
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
$ ') = ', G12.5 )
9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') = ', G12.5 )
9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
$ ', test(', I2, ') = ', G12.5 )
RETURN
*
* End of CCHKGT
*
END