You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
556 lines
17 KiB
556 lines
17 KiB
*> \brief \b CCHKGT
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
|
|
* A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER NN, NNS, NOUT
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
|
|
* REAL RWORK( * )
|
|
* COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
|
|
* $ XACT( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CCHKGT tests CGTTRF, -TRS, -RFS, and -CON
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNS
|
|
*> \verbatim
|
|
*> NNS is INTEGER
|
|
*> The number of values of NRHS contained in the vector NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSVAL
|
|
*> \verbatim
|
|
*> NSVAL is INTEGER array, dimension (NNS)
|
|
*> The values of the number of right hand sides NRHS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (NMAX*4)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AF
|
|
*> \verbatim
|
|
*> AF is COMPLEX array, dimension (NMAX*4)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> where NSMAX is the largest entry in NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XACT
|
|
*> \verbatim
|
|
*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension
|
|
*> (NMAX*max(3,NSMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension
|
|
*> (max(NMAX)+2*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
|
|
$ A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER NN, NNS, NOUT
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
|
|
REAL RWORK( * )
|
|
COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
|
|
$ XACT( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
INTEGER NTYPES
|
|
PARAMETER ( NTYPES = 12 )
|
|
INTEGER NTESTS
|
|
PARAMETER ( NTESTS = 7 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL TRFCON, ZEROT
|
|
CHARACTER DIST, NORM, TRANS, TYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
|
|
$ K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
|
|
$ NIMAT, NRHS, NRUN
|
|
REAL AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
|
|
$ RCONDO
|
|
* ..
|
|
* .. Local Arrays ..
|
|
CHARACTER TRANSS( 3 )
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
|
REAL RESULT( NTESTS )
|
|
COMPLEX Z( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL CLANGT, SCASUM, SGET06
|
|
EXTERNAL CLANGT, SCASUM, SGET06
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAERH, ALAHD, ALASUM, CCOPY, CERRGE, CGET04,
|
|
$ CGTCON, CGTRFS, CGTT01, CGTT02, CGTT05, CGTTRF,
|
|
$ CGTTRS, CLACPY, CLAGTM, CLARNV, CLATB4, CLATMS,
|
|
$ CSSCAL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, NUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
|
|
$ 'C' /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
PATH( 1: 1 ) = 'Complex precision'
|
|
PATH( 2: 3 ) = 'GT'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
*
|
|
* Test the error exits
|
|
*
|
|
IF( TSTERR )
|
|
$ CALL CERRGE( PATH, NOUT )
|
|
INFOT = 0
|
|
*
|
|
DO 110 IN = 1, NN
|
|
*
|
|
* Do for each value of N in NVAL.
|
|
*
|
|
N = NVAL( IN )
|
|
M = MAX( N-1, 0 )
|
|
LDA = MAX( 1, N )
|
|
NIMAT = NTYPES
|
|
IF( N.LE.0 )
|
|
$ NIMAT = 1
|
|
*
|
|
DO 100 IMAT = 1, NIMAT
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 100
|
|
*
|
|
* Set up parameters with CLATB4.
|
|
*
|
|
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
|
$ COND, DIST )
|
|
*
|
|
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
|
|
IF( IMAT.LE.6 ) THEN
|
|
*
|
|
* Types 1-6: generate matrices of known condition number.
|
|
*
|
|
KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
|
|
SRNAMT = 'CLATMS'
|
|
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
|
|
$ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
|
|
$ INFO )
|
|
*
|
|
* Check the error code from CLATMS.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
|
|
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 100
|
|
END IF
|
|
IZERO = 0
|
|
*
|
|
IF( N.GT.1 ) THEN
|
|
CALL CCOPY( N-1, AF( 4 ), 3, A, 1 )
|
|
CALL CCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
|
|
END IF
|
|
CALL CCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
|
|
ELSE
|
|
*
|
|
* Types 7-12: generate tridiagonal matrices with
|
|
* unknown condition numbers.
|
|
*
|
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
|
|
*
|
|
* Generate a matrix with elements whose real and
|
|
* imaginary parts are from [-1,1].
|
|
*
|
|
CALL CLARNV( 2, ISEED, N+2*M, A )
|
|
IF( ANORM.NE.ONE )
|
|
$ CALL CSSCAL( N+2*M, ANORM, A, 1 )
|
|
ELSE IF( IZERO.GT.0 ) THEN
|
|
*
|
|
* Reuse the last matrix by copying back the zeroed out
|
|
* elements.
|
|
*
|
|
IF( IZERO.EQ.1 ) THEN
|
|
A( N ) = Z( 2 )
|
|
IF( N.GT.1 )
|
|
$ A( 1 ) = Z( 3 )
|
|
ELSE IF( IZERO.EQ.N ) THEN
|
|
A( 3*N-2 ) = Z( 1 )
|
|
A( 2*N-1 ) = Z( 2 )
|
|
ELSE
|
|
A( 2*N-2+IZERO ) = Z( 1 )
|
|
A( N-1+IZERO ) = Z( 2 )
|
|
A( IZERO ) = Z( 3 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* If IMAT > 7, set one column of the matrix to 0.
|
|
*
|
|
IF( .NOT.ZEROT ) THEN
|
|
IZERO = 0
|
|
ELSE IF( IMAT.EQ.8 ) THEN
|
|
IZERO = 1
|
|
Z( 2 ) = A( N )
|
|
A( N ) = ZERO
|
|
IF( N.GT.1 ) THEN
|
|
Z( 3 ) = A( 1 )
|
|
A( 1 ) = ZERO
|
|
END IF
|
|
ELSE IF( IMAT.EQ.9 ) THEN
|
|
IZERO = N
|
|
Z( 1 ) = A( 3*N-2 )
|
|
Z( 2 ) = A( 2*N-1 )
|
|
A( 3*N-2 ) = ZERO
|
|
A( 2*N-1 ) = ZERO
|
|
ELSE
|
|
IZERO = ( N+1 ) / 2
|
|
DO 20 I = IZERO, N - 1
|
|
A( 2*N-2+I ) = ZERO
|
|
A( N-1+I ) = ZERO
|
|
A( I ) = ZERO
|
|
20 CONTINUE
|
|
A( 3*N-2 ) = ZERO
|
|
A( 2*N-1 ) = ZERO
|
|
END IF
|
|
END IF
|
|
*
|
|
*+ TEST 1
|
|
* Factor A as L*U and compute the ratio
|
|
* norm(L*U - A) / (n * norm(A) * EPS )
|
|
*
|
|
CALL CCOPY( N+2*M, A, 1, AF, 1 )
|
|
SRNAMT = 'CGTTRF'
|
|
CALL CGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
|
|
$ IWORK, INFO )
|
|
*
|
|
* Check error code from CGTTRF.
|
|
*
|
|
IF( INFO.NE.IZERO )
|
|
$ CALL ALAERH( PATH, 'CGTTRF', INFO, IZERO, ' ', N, N, 1,
|
|
$ 1, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
TRFCON = INFO.NE.0
|
|
*
|
|
CALL CGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
|
|
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
|
|
$ RWORK, RESULT( 1 ) )
|
|
*
|
|
* Print the test ratio if it is .GE. THRESH.
|
|
*
|
|
IF( RESULT( 1 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
*
|
|
DO 50 ITRAN = 1, 2
|
|
TRANS = TRANSS( ITRAN )
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
NORM = 'O'
|
|
ELSE
|
|
NORM = 'I'
|
|
END IF
|
|
ANORM = CLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
|
|
*
|
|
IF( .NOT.TRFCON ) THEN
|
|
*
|
|
* Use CGTTRS to solve for one column at a time of
|
|
* inv(A), computing the maximum column sum as we go.
|
|
*
|
|
AINVNM = ZERO
|
|
DO 40 I = 1, N
|
|
DO 30 J = 1, N
|
|
X( J ) = ZERO
|
|
30 CONTINUE
|
|
X( I ) = ONE
|
|
CALL CGTTRS( TRANS, N, 1, AF, AF( M+1 ),
|
|
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
|
|
$ LDA, INFO )
|
|
AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
|
|
40 CONTINUE
|
|
*
|
|
* Compute RCONDC = 1 / (norm(A) * norm(inv(A))
|
|
*
|
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDC = ONE
|
|
ELSE
|
|
RCONDC = ( ONE / ANORM ) / AINVNM
|
|
END IF
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
RCONDO = RCONDC
|
|
ELSE
|
|
RCONDI = RCONDC
|
|
END IF
|
|
ELSE
|
|
RCONDC = ZERO
|
|
END IF
|
|
*
|
|
*+ TEST 7
|
|
* Estimate the reciprocal of the condition number of the
|
|
* matrix.
|
|
*
|
|
SRNAMT = 'CGTCON'
|
|
CALL CGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
|
|
$ AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
|
|
$ INFO )
|
|
*
|
|
* Check error code from CGTCON.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGTCON', INFO, 0, NORM, N, N, -1,
|
|
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
RESULT( 7 ) = SGET06( RCOND, RCONDC )
|
|
*
|
|
* Print the test ratio if it is .GE. THRESH.
|
|
*
|
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
|
|
$ RESULT( 7 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
50 CONTINUE
|
|
*
|
|
* Skip the remaining tests if the matrix is singular.
|
|
*
|
|
IF( TRFCON )
|
|
$ GO TO 100
|
|
*
|
|
DO 90 IRHS = 1, NNS
|
|
NRHS = NSVAL( IRHS )
|
|
*
|
|
* Generate NRHS random solution vectors.
|
|
*
|
|
IX = 1
|
|
DO 60 J = 1, NRHS
|
|
CALL CLARNV( 2, ISEED, N, XACT( IX ) )
|
|
IX = IX + LDA
|
|
60 CONTINUE
|
|
*
|
|
DO 80 ITRAN = 1, 3
|
|
TRANS = TRANSS( ITRAN )
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
RCONDC = RCONDO
|
|
ELSE
|
|
RCONDC = RCONDI
|
|
END IF
|
|
*
|
|
* Set the right hand side.
|
|
*
|
|
CALL CLAGTM( TRANS, N, NRHS, ONE, A,
|
|
$ A( M+1 ), A( N+M+1 ), XACT, LDA,
|
|
$ ZERO, B, LDA )
|
|
*
|
|
*+ TEST 2
|
|
* Solve op(A) * X = B and compute the residual.
|
|
*
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
|
SRNAMT = 'CGTTRS'
|
|
CALL CGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
|
|
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
|
|
$ LDA, INFO )
|
|
*
|
|
* Check error code from CGTTRS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGTTRS', INFO, 0, TRANS, N, N,
|
|
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
|
|
$ NOUT )
|
|
*
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
|
CALL CGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
|
|
$ X, LDA, WORK, LDA, RESULT( 2 ) )
|
|
*
|
|
*+ TEST 3
|
|
* Check solution from generated exact solution.
|
|
*
|
|
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
|
$ RESULT( 3 ) )
|
|
*
|
|
*+ TESTS 4, 5, and 6
|
|
* Use iterative refinement to improve the solution.
|
|
*
|
|
SRNAMT = 'CGTRFS'
|
|
CALL CGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
|
|
$ AF, AF( M+1 ), AF( N+M+1 ),
|
|
$ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
|
|
$ RWORK, RWORK( NRHS+1 ), WORK,
|
|
$ RWORK( 2*NRHS+1 ), INFO )
|
|
*
|
|
* Check error code from CGTRFS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGTRFS', INFO, 0, TRANS, N, N,
|
|
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
|
|
$ NOUT )
|
|
*
|
|
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
|
$ RESULT( 4 ) )
|
|
CALL CGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
|
|
$ B, LDA, X, LDA, XACT, LDA, RWORK,
|
|
$ RWORK( NRHS+1 ), RESULT( 5 ) )
|
|
*
|
|
* Print information about the tests that did not pass the
|
|
* threshold.
|
|
*
|
|
DO 70 K = 2, 6
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
|
|
$ K, RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
70 CONTINUE
|
|
NRUN = NRUN + 5
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
|
|
$ ') = ', G12.5 )
|
|
9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
|
|
$ I2, ', test(', I2, ') = ', G12.5 )
|
|
9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
|
|
$ ', test(', I2, ') = ', G12.5 )
|
|
RETURN
|
|
*
|
|
* End of CCHKGT
|
|
*
|
|
END
|
|
|