You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
6.6 KiB
250 lines
6.6 KiB
2 years ago
|
*> \brief \b ZPPT03
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
|
||
|
* RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDWORK, N
|
||
|
* DOUBLE PRECISION RCOND, RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION RWORK( * )
|
||
|
* COMPLEX*16 A( * ), AINV( * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZPPT03 computes the residual for a Hermitian packed matrix times its
|
||
|
*> inverse:
|
||
|
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
|
||
|
*> where EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> Hermitian matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows and columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (N*(N+1)/2)
|
||
|
*> The original Hermitian matrix A, stored as a packed
|
||
|
*> triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AINV
|
||
|
*> \verbatim
|
||
|
*> AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
|
||
|
*> The (Hermitian) inverse of the matrix A, stored as a packed
|
||
|
*> triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (LDWORK,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWORK
|
||
|
*> \verbatim
|
||
|
*> LDWORK is INTEGER
|
||
|
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The reciprocal of the condition number of A, computed as
|
||
|
*> ( 1/norm(A) ) / norm(AINV).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is DOUBLE PRECISION
|
||
|
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
|
||
|
$ RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDWORK, N
|
||
|
DOUBLE PRECISION RCOND, RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION RWORK( * )
|
||
|
COMPLEX*16 A( * ), AINV( * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J, JJ
|
||
|
DOUBLE PRECISION AINVNM, ANORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHP
|
||
|
EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, DCONJG
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZCOPY, ZHPMV
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0.
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
|
||
|
AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK )
|
||
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCOND = ZERO
|
||
|
RESID = ONE / EPS
|
||
|
RETURN
|
||
|
END IF
|
||
|
RCOND = ( ONE / ANORM ) / AINVNM
|
||
|
*
|
||
|
* UPLO = 'U':
|
||
|
* Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
|
||
|
* expand it to a full matrix, then multiply by A one column at a
|
||
|
* time, moving the result one column to the left.
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
*
|
||
|
* Copy AINV
|
||
|
*
|
||
|
JJ = 1
|
||
|
DO 20 J = 1, N - 1
|
||
|
CALL ZCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
|
||
|
DO 10 I = 1, J - 1
|
||
|
WORK( J, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
|
||
|
10 CONTINUE
|
||
|
JJ = JJ + J
|
||
|
20 CONTINUE
|
||
|
JJ = ( ( N-1 )*N ) / 2 + 1
|
||
|
DO 30 I = 1, N - 1
|
||
|
WORK( N, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Multiply by A
|
||
|
*
|
||
|
DO 40 J = 1, N - 1
|
||
|
CALL ZHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
|
||
|
$ WORK( 1, J ), 1 )
|
||
|
40 CONTINUE
|
||
|
CALL ZHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
|
||
|
$ WORK( 1, N ), 1 )
|
||
|
*
|
||
|
* UPLO = 'L':
|
||
|
* Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
|
||
|
* and multiply by A, moving each column to the right.
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Copy AINV
|
||
|
*
|
||
|
DO 50 I = 1, N - 1
|
||
|
WORK( 1, I ) = DCONJG( AINV( I+1 ) )
|
||
|
50 CONTINUE
|
||
|
JJ = N + 1
|
||
|
DO 70 J = 2, N
|
||
|
CALL ZCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
|
||
|
DO 60 I = 1, N - J
|
||
|
WORK( J, J+I-1 ) = DCONJG( AINV( JJ+I ) )
|
||
|
60 CONTINUE
|
||
|
JJ = JJ + N - J + 1
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* Multiply by A
|
||
|
*
|
||
|
DO 80 J = N, 2, -1
|
||
|
CALL ZHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
|
||
|
$ WORK( 1, J ), 1 )
|
||
|
80 CONTINUE
|
||
|
CALL ZHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
|
||
|
$ WORK( 1, 1 ), 1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Add the identity matrix to WORK .
|
||
|
*
|
||
|
DO 90 I = 1, N
|
||
|
WORK( I, I ) = WORK( I, I ) + CONE
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
|
||
|
*
|
||
|
RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
|
||
|
*
|
||
|
RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZPPT03
|
||
|
*
|
||
|
END
|