Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

388 lines
12 KiB

2 years ago
*> \brief \b ZTPSV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTPSV solves one of the systems of equations
*>
*> A*x = b, or A**T*x = b, or A**H*x = b,
*>
*> where b and x are n element vectors and A is an n by n unit, or
*> non-unit, upper or lower triangular matrix, supplied in packed form.
*>
*> No test for singularity or near-singularity is included in this
*> routine. Such tests must be performed before calling this routine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the matrix is an upper or
*> lower triangular matrix as follows:
*>
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
*>
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the equations to be solved as
*> follows:
*>
*> TRANS = 'N' or 'n' A*x = b.
*>
*> TRANS = 'T' or 't' A**T*x = b.
*>
*> TRANS = 'C' or 'c' A**H*x = b.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not A is unit
*> triangular as follows:
*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*> respectively, and so on.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*> respectively, and so on.
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
*> A are not referenced, but are assumed to be unity.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element right-hand side vector b. On exit, X is overwritten
*> with the solution vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_blas_level2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
* .. Local Scalars ..
COMPLEX*16 TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
LOGICAL NOCONJ,NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (INCX.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZTPSV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOCONJ = LSAME(TRANS,'T')
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of AP are
* accessed sequentially with one pass through AP.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x := inv( A )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 20 J = N,1,-1
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK - 1
DO 10 I = J - 1,1,-1
X(I) = X(I) - TEMP*AP(K)
K = K - 1
10 CONTINUE
END IF
KK = KK - J
20 CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 40 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 30 K = KK - 1,KK - J + 1,-1
IX = IX - INCX
X(IX) = X(IX) - TEMP*AP(K)
30 CONTINUE
END IF
JX = JX - INCX
KK = KK - J
40 CONTINUE
END IF
ELSE
KK = 1
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK + 1
DO 50 I = J + 1,N
X(I) = X(I) - TEMP*AP(K)
K = K + 1
50 CONTINUE
END IF
KK = KK + (N-J+1)
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
X(IX) = X(IX) - TEMP*AP(K)
70 CONTINUE
END IF
JX = JX + INCX
KK = KK + (N-J+1)
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := inv( A**T )*x or x := inv( A**H )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = 1
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 90 I = 1,J - 1
TEMP = TEMP - AP(K)*X(I)
K = K + 1
90 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 100 I = 1,J - 1
TEMP = TEMP - DCONJG(AP(K))*X(I)
K = K + 1
100 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
END IF
X(J) = TEMP
KK = KK + J
110 CONTINUE
ELSE
JX = KX
DO 140 J = 1,N
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 120 K = KK,KK + J - 2
TEMP = TEMP - AP(K)*X(IX)
IX = IX + INCX
120 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 130 K = KK,KK + J - 2
TEMP = TEMP - DCONJG(AP(K))*X(IX)
IX = IX + INCX
130 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
END IF
X(JX) = TEMP
JX = JX + INCX
KK = KK + J
140 CONTINUE
END IF
ELSE
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 170 J = N,1,-1
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 150 I = N,J + 1,-1
TEMP = TEMP - AP(K)*X(I)
K = K - 1
150 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 160 I = N,J + 1,-1
TEMP = TEMP - DCONJG(AP(K))*X(I)
K = K - 1
160 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
END IF
X(J) = TEMP
KK = KK - (N-J+1)
170 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 200 J = N,1,-1
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 180 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - AP(K)*X(IX)
IX = IX - INCX
180 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 190 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - DCONJG(AP(K))*X(IX)
IX = IX - INCX
190 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
END IF
X(JX) = TEMP
JX = JX - INCX
KK = KK - (N-J+1)
200 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of ZTPSV
*
END