You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
387 lines
12 KiB
387 lines
12 KiB
*> \brief \b ZTPSV
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INCX,N
|
|
* CHARACTER DIAG,TRANS,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 AP(*),X(*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZTPSV solves one of the systems of equations
|
|
*>
|
|
*> A*x = b, or A**T*x = b, or A**H*x = b,
|
|
*>
|
|
*> where b and x are n element vectors and A is an n by n unit, or
|
|
*> non-unit, upper or lower triangular matrix, supplied in packed form.
|
|
*>
|
|
*> No test for singularity or near-singularity is included in this
|
|
*> routine. Such tests must be performed before calling this routine.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> On entry, UPLO specifies whether the matrix is an upper or
|
|
*> lower triangular matrix as follows:
|
|
*>
|
|
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
|
*>
|
|
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> On entry, TRANS specifies the equations to be solved as
|
|
*> follows:
|
|
*>
|
|
*> TRANS = 'N' or 'n' A*x = b.
|
|
*>
|
|
*> TRANS = 'T' or 't' A**T*x = b.
|
|
*>
|
|
*> TRANS = 'C' or 'c' A**H*x = b.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> On entry, DIAG specifies whether or not A is unit
|
|
*> triangular as follows:
|
|
*>
|
|
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|
*>
|
|
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
|
*> triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the order of the matrix A.
|
|
*> N must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AP
|
|
*> \verbatim
|
|
*> AP is COMPLEX*16 array, dimension at least
|
|
*> ( ( n*( n + 1 ) )/2 ).
|
|
*> Before entry with UPLO = 'U' or 'u', the array AP must
|
|
*> contain the upper triangular matrix packed sequentially,
|
|
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
|
|
*> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
|
|
*> respectively, and so on.
|
|
*> Before entry with UPLO = 'L' or 'l', the array AP must
|
|
*> contain the lower triangular matrix packed sequentially,
|
|
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
|
|
*> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
|
|
*> respectively, and so on.
|
|
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
|
*> A are not referenced, but are assumed to be unity.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX*16 array, dimension at least
|
|
*> ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
*> Before entry, the incremented array X must contain the n
|
|
*> element right-hand side vector b. On exit, X is overwritten
|
|
*> with the solution vector x.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> On entry, INCX specifies the increment for the elements of
|
|
*> X. INCX must not be zero.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_blas_level2
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 2 Blas routine.
|
|
*>
|
|
*> -- Written on 22-October-1986.
|
|
*> Jack Dongarra, Argonne National Lab.
|
|
*> Jeremy Du Croz, Nag Central Office.
|
|
*> Sven Hammarling, Nag Central Office.
|
|
*> Richard Hanson, Sandia National Labs.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
|
|
*
|
|
* -- Reference BLAS level2 routine --
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INCX,N
|
|
CHARACTER DIAG,TRANS,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 AP(*),X(*)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ZERO
|
|
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
|
* ..
|
|
* .. Local Scalars ..
|
|
COMPLEX*16 TEMP
|
|
INTEGER I,INFO,IX,J,JX,K,KK,KX
|
|
LOGICAL NOCONJ,NOUNIT
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DCONJG
|
|
* ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
INFO = 1
|
|
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
|
+ .NOT.LSAME(TRANS,'C')) THEN
|
|
INFO = 2
|
|
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
|
|
INFO = 3
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 4
|
|
ELSE IF (INCX.EQ.0) THEN
|
|
INFO = 7
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('ZTPSV ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF (N.EQ.0) RETURN
|
|
*
|
|
NOCONJ = LSAME(TRANS,'T')
|
|
NOUNIT = LSAME(DIAG,'N')
|
|
*
|
|
* Set up the start point in X if the increment is not unity. This
|
|
* will be ( N - 1 )*INCX too small for descending loops.
|
|
*
|
|
IF (INCX.LE.0) THEN
|
|
KX = 1 - (N-1)*INCX
|
|
ELSE IF (INCX.NE.1) THEN
|
|
KX = 1
|
|
END IF
|
|
*
|
|
* Start the operations. In this version the elements of AP are
|
|
* accessed sequentially with one pass through AP.
|
|
*
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
*
|
|
* Form x := inv( A )*x.
|
|
*
|
|
IF (LSAME(UPLO,'U')) THEN
|
|
KK = (N* (N+1))/2
|
|
IF (INCX.EQ.1) THEN
|
|
DO 20 J = N,1,-1
|
|
IF (X(J).NE.ZERO) THEN
|
|
IF (NOUNIT) X(J) = X(J)/AP(KK)
|
|
TEMP = X(J)
|
|
K = KK - 1
|
|
DO 10 I = J - 1,1,-1
|
|
X(I) = X(I) - TEMP*AP(K)
|
|
K = K - 1
|
|
10 CONTINUE
|
|
END IF
|
|
KK = KK - J
|
|
20 CONTINUE
|
|
ELSE
|
|
JX = KX + (N-1)*INCX
|
|
DO 40 J = N,1,-1
|
|
IF (X(JX).NE.ZERO) THEN
|
|
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
|
|
TEMP = X(JX)
|
|
IX = JX
|
|
DO 30 K = KK - 1,KK - J + 1,-1
|
|
IX = IX - INCX
|
|
X(IX) = X(IX) - TEMP*AP(K)
|
|
30 CONTINUE
|
|
END IF
|
|
JX = JX - INCX
|
|
KK = KK - J
|
|
40 CONTINUE
|
|
END IF
|
|
ELSE
|
|
KK = 1
|
|
IF (INCX.EQ.1) THEN
|
|
DO 60 J = 1,N
|
|
IF (X(J).NE.ZERO) THEN
|
|
IF (NOUNIT) X(J) = X(J)/AP(KK)
|
|
TEMP = X(J)
|
|
K = KK + 1
|
|
DO 50 I = J + 1,N
|
|
X(I) = X(I) - TEMP*AP(K)
|
|
K = K + 1
|
|
50 CONTINUE
|
|
END IF
|
|
KK = KK + (N-J+1)
|
|
60 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
DO 80 J = 1,N
|
|
IF (X(JX).NE.ZERO) THEN
|
|
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
|
|
TEMP = X(JX)
|
|
IX = JX
|
|
DO 70 K = KK + 1,KK + N - J
|
|
IX = IX + INCX
|
|
X(IX) = X(IX) - TEMP*AP(K)
|
|
70 CONTINUE
|
|
END IF
|
|
JX = JX + INCX
|
|
KK = KK + (N-J+1)
|
|
80 CONTINUE
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form x := inv( A**T )*x or x := inv( A**H )*x.
|
|
*
|
|
IF (LSAME(UPLO,'U')) THEN
|
|
KK = 1
|
|
IF (INCX.EQ.1) THEN
|
|
DO 110 J = 1,N
|
|
TEMP = X(J)
|
|
K = KK
|
|
IF (NOCONJ) THEN
|
|
DO 90 I = 1,J - 1
|
|
TEMP = TEMP - AP(K)*X(I)
|
|
K = K + 1
|
|
90 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
|
|
ELSE
|
|
DO 100 I = 1,J - 1
|
|
TEMP = TEMP - DCONJG(AP(K))*X(I)
|
|
K = K + 1
|
|
100 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
|
|
END IF
|
|
X(J) = TEMP
|
|
KK = KK + J
|
|
110 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
DO 140 J = 1,N
|
|
TEMP = X(JX)
|
|
IX = KX
|
|
IF (NOCONJ) THEN
|
|
DO 120 K = KK,KK + J - 2
|
|
TEMP = TEMP - AP(K)*X(IX)
|
|
IX = IX + INCX
|
|
120 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
|
|
ELSE
|
|
DO 130 K = KK,KK + J - 2
|
|
TEMP = TEMP - DCONJG(AP(K))*X(IX)
|
|
IX = IX + INCX
|
|
130 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
|
|
END IF
|
|
X(JX) = TEMP
|
|
JX = JX + INCX
|
|
KK = KK + J
|
|
140 CONTINUE
|
|
END IF
|
|
ELSE
|
|
KK = (N* (N+1))/2
|
|
IF (INCX.EQ.1) THEN
|
|
DO 170 J = N,1,-1
|
|
TEMP = X(J)
|
|
K = KK
|
|
IF (NOCONJ) THEN
|
|
DO 150 I = N,J + 1,-1
|
|
TEMP = TEMP - AP(K)*X(I)
|
|
K = K - 1
|
|
150 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
|
|
ELSE
|
|
DO 160 I = N,J + 1,-1
|
|
TEMP = TEMP - DCONJG(AP(K))*X(I)
|
|
K = K - 1
|
|
160 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
|
|
END IF
|
|
X(J) = TEMP
|
|
KK = KK - (N-J+1)
|
|
170 CONTINUE
|
|
ELSE
|
|
KX = KX + (N-1)*INCX
|
|
JX = KX
|
|
DO 200 J = N,1,-1
|
|
TEMP = X(JX)
|
|
IX = KX
|
|
IF (NOCONJ) THEN
|
|
DO 180 K = KK,KK - (N- (J+1)),-1
|
|
TEMP = TEMP - AP(K)*X(IX)
|
|
IX = IX - INCX
|
|
180 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
|
|
ELSE
|
|
DO 190 K = KK,KK - (N- (J+1)),-1
|
|
TEMP = TEMP - DCONJG(AP(K))*X(IX)
|
|
IX = IX - INCX
|
|
190 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
|
|
END IF
|
|
X(JX) = TEMP
|
|
JX = JX - INCX
|
|
KK = KK - (N-J+1)
|
|
200 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZTPSV
|
|
*
|
|
END
|
|
|