You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
6.4 KiB
225 lines
6.4 KiB
2 years ago
|
*> \brief \b DGET40
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGET40( RMAX, LMAX, NINFO, KNT, NIN )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER KNT, LMAX, NIN
|
||
|
* DOUBLE PRECISION RMAX
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER NINFO( 2 )
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGET40 tests DTGEXC, a routine for swapping adjacent blocks (either
|
||
|
*> 1 by 1 or 2 by 2) on the diagonal of a pencil in real generalized Schur form.
|
||
|
*> Thus, DTGEXC computes an orthogonal matrices Q and Z such that
|
||
|
*>
|
||
|
*> Q' * ( [ A B ], [ D E ] ) * Z = ( [ C1 B1 ], [ F1 E1 ] )
|
||
|
*> ( [ 0 C ] [ F ] ) ( [ 0 A1 ] [ D1] )
|
||
|
*>
|
||
|
*> where (C1,F1) is similar to (C,F) and (A1,D1) is similar to (A,D).
|
||
|
*> Both (A,D) and (C,F) are assumed to be in standard form
|
||
|
*> and (A1,D1) and (C1,F1) are returned with the
|
||
|
*> same properties.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[out] RMAX
|
||
|
*> \verbatim
|
||
|
*> RMAX is DOUBLE PRECISION
|
||
|
*> Value of the largest test ratio.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] LMAX
|
||
|
*> \verbatim
|
||
|
*> LMAX is INTEGER
|
||
|
*> Example number where largest test ratio achieved.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] NINFO
|
||
|
*> \verbatim
|
||
|
*> NINFO is INTEGER array, dimension (2)
|
||
|
*> NINFO( 1 ) = DTGEXC without accumulation returned INFO nonzero
|
||
|
*> NINFO( 2 ) = DTGEXC with accumulation returned INFO nonzero
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] KNT
|
||
|
*> \verbatim
|
||
|
*> KNT is INTEGER
|
||
|
*> Total number of examples tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NIN
|
||
|
*> \verbatim
|
||
|
*> NIN is INTEGER
|
||
|
*> Input logical unit number.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGET40( RMAX, LMAX, NINFO, KNT, NIN )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER KNT, LMAX, NIN
|
||
|
DOUBLE PRECISION RMAX
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER NINFO( 2 )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
INTEGER LDT, LWORK
|
||
|
PARAMETER ( LDT = 10, LWORK = 100 + 4*LDT + 16 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1,
|
||
|
$ ILST2, ILSTSV, J, LOC, N
|
||
|
DOUBLE PRECISION EPS, RES
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
DOUBLE PRECISION Q( LDT, LDT ), Z( LDT, LDT ), RESULT( 4 ),
|
||
|
$ T( LDT, LDT ), T1( LDT, LDT ), T2( LDT, LDT ),
|
||
|
$ S( LDT, LDT ), S1( LDT, LDT ), S2( LDT, LDT ),
|
||
|
$ TMP( LDT, LDT ), WORK( LWORK )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DHST01, DLACPY, DLASET, DTGEXC
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SIGN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
EPS = DLAMCH( 'P' )
|
||
|
RMAX = ZERO
|
||
|
LMAX = 0
|
||
|
KNT = 0
|
||
|
NINFO( 1 ) = 0
|
||
|
NINFO( 2 ) = 0
|
||
|
*
|
||
|
* Read input data until N=0
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
READ( NIN, FMT = * )N, IFST, ILST
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
KNT = KNT + 1
|
||
|
DO 20 I = 1, N
|
||
|
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
|
||
|
20 CONTINUE
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, T, LDT )
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT )
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT )
|
||
|
DO 25 I = 1, N
|
||
|
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
|
||
|
25 CONTINUE
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, S, LDT )
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, S1, LDT )
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, S2, LDT )
|
||
|
IFSTSV = IFST
|
||
|
ILSTSV = ILST
|
||
|
IFST1 = IFST
|
||
|
ILST1 = ILST
|
||
|
IFST2 = IFST
|
||
|
ILST2 = ILST
|
||
|
RES = ZERO
|
||
|
*
|
||
|
* Test without accumulating Q and Z
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDT )
|
||
|
CALL DTGEXC( .FALSE., .FALSE., N, T1, LDT, S1, LDT, Q, LDT,
|
||
|
$ Z, LDT, IFST1, ILST1, WORK, LWORK, NINFO ( 1 ) )
|
||
|
DO 40 I = 1, N
|
||
|
DO 30 J = 1, N
|
||
|
IF( I.EQ.J .AND. Q( I, J ).NE.ONE )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( I.NE.J .AND. Q( I, J ).NE.ZERO )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( I.EQ.J .AND. Z( I, J ).NE.ONE )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( I.NE.J .AND. Z( I, J ).NE.ZERO )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Test with accumulating Q
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDT )
|
||
|
CALL DTGEXC( .TRUE., .TRUE., N, T2, LDT, S2, LDT, Q, LDT,
|
||
|
$ Z, LDT, IFST2, ILST2, WORK, LWORK, NINFO ( 2 ) )
|
||
|
*
|
||
|
* Compare T1 with T2 and S1 with S2
|
||
|
*
|
||
|
DO 60 I = 1, N
|
||
|
DO 50 J = 1, N
|
||
|
IF( T1( I, J ).NE.T2( I, J ) )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( S1( I, J ).NE.S2( I, J ) )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
IF( IFST1.NE.IFST2 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( ILST1.NE.ILST2 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( NINFO( 1 ).NE.NINFO( 2 ) )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
*
|
||
|
* Test orthogonality of Q and Z and backward error on T2 and S2
|
||
|
*
|
||
|
CALL DGET51( 1, N, T, LDT, T2, LDT, Q, LDT, Z, LDT, WORK,
|
||
|
$ RESULT( 1 ) )
|
||
|
CALL DGET51( 1, N, S, LDT, S2, LDT, Q, LDT, Z, LDT, WORK,
|
||
|
$ RESULT( 2 ) )
|
||
|
CALL DGET51( 3, N, T, LDT, T2, LDT, Q, LDT, Q, LDT, WORK,
|
||
|
$ RESULT( 3 ) )
|
||
|
CALL DGET51( 3, N, T, LDT, T2, LDT, Z, LDT, Z, LDT, WORK,
|
||
|
$ RESULT( 4 ) )
|
||
|
RES = RES + RESULT( 1 ) + RESULT( 2 ) + RESULT( 3 ) + RESULT( 4 )
|
||
|
*
|
||
|
* Read next matrix pair
|
||
|
*
|
||
|
GO TO 10
|
||
|
*
|
||
|
* End of DGET40
|
||
|
*
|
||
|
END
|