Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2552 lines
92 KiB

2 years ago
*> \brief \b ZCHKEE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM ZCHKEE
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix
*> eigenvalue problem. The test paths in this version are
*>
*> NEP (Nonsymmetric Eigenvalue Problem):
*> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR
*>
*> SEP (Hermitian Eigenvalue Problem):
*> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC,
*> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X),
*> ZHEEVD, ZHBEVD, ZHPEVD
*>
*> SVD (Singular Value Decomposition):
*> Test ZGEBRD, ZUNGBR, and ZBDSQR
*> and the drivers ZGESVD, ZGESDD
*>
*> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver):
*> Test ZGEEV
*>
*> ZES (Nonsymmetric Schur form Driver):
*> Test ZGEES
*>
*> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
*> Test ZGEEVX
*>
*> ZSX (Nonsymmetric Schur form Expert Driver):
*> Test ZGEESX
*>
*> ZGG (Generalized Nonsymmetric Eigenvalue Problem):
*> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC
*>
*> ZGS (Generalized Nonsymmetric Schur form Driver):
*> Test ZGGES
*>
*> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
*> Test ZGGEV
*>
*> ZGX (Generalized Nonsymmetric Schur form Expert Driver):
*> Test ZGGESX
*>
*> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
*> Test ZGGEVX
*>
*> ZSG (Hermitian Generalized Eigenvalue Problem):
*> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD,
*> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX
*>
*> ZHB (Hermitian Band Eigenvalue Problem):
*> Test ZHBTRD
*>
*> ZBB (Band Singular Value Decomposition):
*> Test ZGBBRD
*>
*> ZEC (Eigencondition estimation):
*> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN
*>
*> ZBL (Balancing a general matrix)
*> Test ZGEBAL
*>
*> ZBK (Back transformation on a balanced matrix)
*> Test ZGEBAK
*>
*> ZGL (Balancing a matrix pair)
*> Test ZGGBAL
*>
*> ZGK (Back transformation on a matrix pair)
*> Test ZGGBAK
*>
*> GLM (Generalized Linear Regression Model):
*> Tests ZGGGLM
*>
*> GQR (Generalized QR and RQ factorizations):
*> Tests ZGGQRF and ZGGRQF
*>
*> GSV (Generalized Singular Value Decomposition):
*> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT
*>
*> CSD (CS decomposition):
*> Tests ZUNCSD
*>
*> LSE (Constrained Linear Least Squares):
*> Tests ZGGLSE
*>
*> Each test path has a different set of inputs, but the data sets for
*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
*> single input file. The first line of input should contain one of the
*> 3-character path names in columns 1-3. The number of remaining lines
*> depends on what is found on the first line.
*>
*> The number of matrix types used in testing is often controllable from
*> the input file. The number of matrix types for each path, and the
*> test routine that describes them, is as follows:
*>
*> Path name(s) Types Test routine
*>
*> ZHS or NEP 21 ZCHKHS
*> ZST or SEP 21 ZCHKST (routines)
*> 18 ZDRVST (drivers)
*> ZBD or SVD 16 ZCHKBD (routines)
*> 5 ZDRVBD (drivers)
*> ZEV 21 ZDRVEV
*> ZES 21 ZDRVES
*> ZVX 21 ZDRVVX
*> ZSX 21 ZDRVSX
*> ZGG 26 ZCHKGG (routines)
*> ZGS 26 ZDRGES
*> ZGX 5 ZDRGSX
*> ZGV 26 ZDRGEV
*> ZXV 2 ZDRGVX
*> ZSG 21 ZDRVSG
*> ZHB 15 ZCHKHB
*> ZBB 15 ZCHKBB
*> ZEC - ZCHKEC
*> ZBL - ZCHKBL
*> ZBK - ZCHKBK
*> ZGL - ZCHKGL
*> ZGK - ZCHKGK
*> GLM 8 ZCKGLM
*> GQR 8 ZCKGQR
*> GSV 8 ZCKGSV
*> CSD 3 ZCKCSD
*> LSE 8 ZCKLSE
*>
*>-----------------------------------------------------------------------
*>
*> NEP input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, NX, NS, and
*> MAXB.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 8: INMIN, INTEGER array, dimension (NPARMS)
*> LAHQR vs TTQRE crossover point, >= 11
*>
*> line 9: INWIN, INTEGER array, dimension (NPARMS)
*> recommended deflation window size
*>
*> line 10: INIBL, INTEGER array, dimension (NPARMS)
*> nibble crossover point
*>
*> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
*> number of simultaneous shifts)
*>
*> line 12: IACC22, INTEGER array, dimension (NPARMS)
*> select structured matrix multiply: 0, 1 or 2)
*>
*> line 13: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold. To have all of the test
*> ratios printed, use THRESH = 0.0 .
*>
*> line 14: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 14 was 2:
*>
*> line 15: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
*> the user to specify the matrix types. Each line contains
*> a 3-character path name in columns 1-3, and the number
*> of matrix types must be the first nonblank item in columns
*> 4-80. If the number of matrix types is at least 1 but is
*> less than the maximum number of possible types, a second
*> line will be read to get the numbers of the matrix types to
*> be used. For example,
*> NEP 21
*> requests all of the matrix types for the nonsymmetric
*> eigenvalue problem, while
*> NEP 4
*> 9 10 11 12
*> requests only matrices of type 9, 10, 11, and 12.
*>
*> The valid 3-character path names are 'NEP' or 'ZHS' for the
*> nonsymmetric eigenvalue routines.
*>
*>-----------------------------------------------------------------------
*>
*> SEP or ZSG input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, and NX.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 8: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 9: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 10: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 11: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 12: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 12 was 2:
*>
*> line 13: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 13-EOF: Lines specifying matrix types, as for NEP.
*> The valid 3-character path names are 'SEP' or 'ZST' for the
*> Hermitian eigenvalue routines and driver routines, and
*> 'ZSG' for the routines for the Hermitian generalized
*> eigenvalue problem.
*>
*>-----------------------------------------------------------------------
*>
*> SVD input file:
*>
*> line 2: NN, INTEGER
*> Number of values of M and N.
*>
*> line 3: MVAL, INTEGER array, dimension (NN)
*> The values for the matrix row dimension M.
*>
*> line 4: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix column dimension N.
*>
*> line 5: NPARMS, INTEGER
*> Number of values of the parameter NB, NBMIN, NX, and NRHS.
*>
*> line 6: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 7: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 8: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 9: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of right hand sides NRHS.
*>
*> line 10: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 11: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 12: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 13: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 14: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 14 was 2:
*>
*> line 15: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 15-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path names are 'SVD' or 'ZBD' for both the
*> SVD routines and the SVD driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> ZEV and ZES data files:
*>
*> line 1: 'ZEV' or 'ZES' in columns 1 to 3.
*>
*> line 2: NSIZES, INTEGER
*> Number of sizes of matrices to use. Should be at least 0
*> and at most 20. If NSIZES = 0, no testing is done
*> (although the remaining 3 lines are still read).
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*> Dimensions of matrices to be tested.
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHSEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 5: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> If it is 0., all test case data will be printed.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 8 and following: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'ZEV' to test CGEEV, or
*> 'ZES' to test CGEES.
*>
*>-----------------------------------------------------------------------
*>
*> The ZVX data has two parts. The first part is identical to ZEV,
*> and the second part consists of test matrices with precomputed
*> solutions.
*>
*> line 1: 'ZVX' in columns 1-3.
*>
*> line 2: NSIZES, INTEGER
*> If NSIZES = 0, no testing of randomly generated examples
*> is done, but any precomputed examples are tested.
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*>
*> line 5: THRESH, REAL
*>
*> line 6: NEWSD, INTEGER
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*>
*> lines 8 and following: The first line contains 'ZVX' in columns 1-3
*> followed by the number of matrix types, possibly with
*> a second line to specify certain matrix types.
*> If the number of matrix types = 0, no testing of randomly
*> generated examples is done, but any precomputed examples
*> are tested.
*>
*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is
*> its dimension. The first line contains the dimension N and
*> ISRT (two integers). ISRT indicates whether the last N lines
*> are sorted by increasing real part of the eigenvalue
*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next
*> N**2 lines contain the matrix rowwise, one entry per line.
*> The last N lines correspond to each eigenvalue. Each of
*> these last N lines contains 4 real values: the real part of
*> the eigenvalues, the imaginary part of the eigenvalue, the
*> reciprocal condition number of the eigenvalues, and the
*> reciprocal condition number of the vector eigenvector. The
*> end of data is indicated by dimension N=0. Even if no data
*> is to be tested, there must be at least one line containing
*> N=0.
*>
*>-----------------------------------------------------------------------
*>
*> The ZSX data is like ZVX. The first part is identical to ZEV, and the
*> second part consists of test matrices with precomputed solutions.
*>
*> line 1: 'ZSX' in columns 1-3.
*>
*> line 2: NSIZES, INTEGER
*> If NSIZES = 0, no testing of randomly generated examples
*> is done, but any precomputed examples are tested.
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*>
*> line 5: THRESH, REAL
*>
*> line 6: NEWSD, INTEGER
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*>
*> lines 8 and following: The first line contains 'ZSX' in columns 1-3
*> followed by the number of matrix types, possibly with
*> a second line to specify certain matrix types.
*> If the number of matrix types = 0, no testing of randomly
*> generated examples is done, but any precomputed examples
*> are tested.
*>
*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is
*> its dimension. The first line contains the dimension N, the
*> dimension M of an invariant subspace, and ISRT. The second
*> line contains M integers, identifying the eigenvalues in the
*> invariant subspace (by their position in a list of
*> eigenvalues ordered by increasing real part (if ISRT=0) or
*> by increasing imaginary part (if ISRT=1)). The next N**2
*> lines contain the matrix rowwise. The last line contains the
*> reciprocal condition number for the average of the selected
*> eigenvalues, and the reciprocal condition number for the
*> corresponding right invariant subspace. The end of data in
*> indicated by a line containing N=0, M=0, and ISRT = 0. Even
*> if no data is to be tested, there must be at least one line
*> containing N=0, M=0 and ISRT=0.
*>
*>-----------------------------------------------------------------------
*>
*> ZGG input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and
*> MAXB.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for NBMIN, the minimum row dimension for blocks.
*>
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of shifts.
*>
*> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
*> The values for MAXB, used in determining minimum blocksize.
*>
*> line 9: IACC22, INTEGER array, dimension (NPARMS)
*> select structured matrix multiply: 1 or 2)
*>
*> line 10: NBCOL, INTEGER array, dimension (NPARMS)
*> The values for NBCOL, the minimum column dimension for
*> blocks.
*>
*> line 11: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 12: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 13: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 14: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 15: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 15 was 2:
*>
*> line 16: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 17-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'ZGG' for the generalized
*> eigenvalue problem routines and driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> ZGS and ZGV input files:
*>
*> line 1: 'ZGS' or 'ZGV' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension(NN)
*> Dimensions of matrices to be tested.
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 5: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> If it is 0., all test case data will be printed.
*>
*> line 6: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits.
*>
*> line 7: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 17 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 7-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'ZGS' for the generalized
*> eigenvalue problem routines and driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> ZGX input file:
*> line 1: 'ZGX' in columns 1 to 3.
*>
*> line 2: N, INTEGER
*> Value of N.
*>
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 4: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> Information will be printed about each test for which the
*> test ratio is greater than or equal to the threshold.
*>
*> line 5: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> If line 2 was 0:
*>
*> line 7-EOF: Precomputed examples are tested.
*>
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
*> its dimension. The first line contains the dimension (a
*> single integer). The next line contains an integer k such
*> that only the last k eigenvalues will be selected and appear
*> in the leading diagonal blocks of $A$ and $B$. The next N*N
*> lines contain the matrix A, one element per line. The next N*N
*> lines contain the matrix B. The last line contains the
*> reciprocal of the eigenvalue cluster condition number and the
*> reciprocal of the deflating subspace (associated with the
*> selected eigencluster) condition number. The end of data is
*> indicated by dimension N=0. Even if no data is to be tested,
*> there must be at least one line containing N=0.
*>
*>-----------------------------------------------------------------------
*>
*> ZXV input files:
*> line 1: 'ZXV' in columns 1 to 3.
*>
*> line 2: N, INTEGER
*> Value of N.
*>
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 4: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> Information will be printed about each test for which the
*> test ratio is greater than or equal to the threshold.
*>
*> line 5: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> If line 2 was 0:
*>
*> line 7-EOF: Precomputed examples are tested.
*>
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
*> its dimension. The first line contains the dimension (a
*> single integer). The next N*N lines contain the matrix A, one
*> element per line. The next N*N lines contain the matrix B.
*> The next line contains the reciprocals of the eigenvalue
*> condition numbers. The last line contains the reciprocals of
*> the eigenvector condition numbers. The end of data is
*> indicated by dimension N=0. Even if no data is to be tested,
*> there must be at least one line containing N=0.
*>
*>-----------------------------------------------------------------------
*>
*> ZHB input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NK, INTEGER
*> Number of values of K.
*>
*> line 5: KVAL, INTEGER array, dimension (NK)
*> The values for the matrix dimension K.
*>
*> line 6: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 7 was 2:
*>
*> line 8: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 8-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'ZHB'.
*>
*>-----------------------------------------------------------------------
*>
*> ZBB input file:
*>
*> line 2: NN, INTEGER
*> Number of values of M and N.
*>
*> line 3: MVAL, INTEGER array, dimension (NN)
*> The values for the matrix row dimension M.
*>
*> line 4: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix column dimension N.
*>
*> line 4: NK, INTEGER
*> Number of values of K.
*>
*> line 5: KVAL, INTEGER array, dimension (NK)
*> The values for the matrix bandwidth K.
*>
*> line 6: NPARMS, INTEGER
*> Number of values of the parameter NRHS
*>
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of right hand sides NRHS.
*>
*> line 8: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 9: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 9 was 2:
*>
*> line 10: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 10-EOF: Lines specifying matrix types, as for SVD.
*> The 3-character path name is 'ZBB'.
*>
*>-----------------------------------------------------------------------
*>
*> ZEC input file:
*>
*> line 2: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> lines 3-EOF:
*>
*> Input for testing the eigencondition routines consists of a set of
*> specially constructed test cases and their solutions. The data
*> format is not intended to be modified by the user.
*>
*>-----------------------------------------------------------------------
*>
*> ZBL and ZBK input files:
*>
*> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in
*> columns 1-3 to test CGEBAK.
*>
*> The remaining lines consist of specially constructed test cases.
*>
*>-----------------------------------------------------------------------
*>
*> ZGL and ZGK input files:
*>
*> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in
*> columns 1-3 to test ZGGBAK.
*>
*> The remaining lines consist of specially constructed test cases.
*>
*>-----------------------------------------------------------------------
*>
*> GLM data file:
*>
*> line 1: 'GLM' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M (row dimension).
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P (row dimension).
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N (column dimension), note M <= N <= M+P.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GLM' for the generalized
*> linear regression model routines.
*>
*>-----------------------------------------------------------------------
*>
*> GQR data file:
*>
*> line 1: 'GQR' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M.
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P.
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GQR' for the generalized
*> QR and RQ routines.
*>
*>-----------------------------------------------------------------------
*>
*> GSV data file:
*>
*> line 1: 'GSV' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M (row dimension).
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P (row dimension).
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N (column dimension).
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GSV' for the generalized
*> SVD routines.
*>
*>-----------------------------------------------------------------------
*>
*> CSD data file:
*>
*> line 1: 'CSD' in columns 1 to 3.
*>
*> line 2: NM, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NM)
*> Values of M (row and column dimension of orthogonal matrix).
*>
*> line 4: PVAL, INTEGER array, dimension(NM)
*> Values of P (row dimension of top-left block).
*>
*> line 5: NVAL, INTEGER array, dimension(NM)
*> Values of N (column dimension of top-left block).
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CSD' for the CSD routine.
*>
*>-----------------------------------------------------------------------
*>
*> LSE data file:
*>
*> line 1: 'LSE' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M.
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P.
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N, note P <= N <= P+M.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GSV' for the generalized
*> SVD routines.
*>
*>-----------------------------------------------------------------------
*>
*> NMAX is currently set to 132 and must be at least 12 for some of the
*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter
*> statements below. For SVD, we assume NRHS may be as big as N. The
*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG.
*> \endverbatim
*
* Arguments:
* ==========
*
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
* =====================================================================
PROGRAM ZCHKEE
*
#if defined(_OPENMP)
use omp_lib
#endif
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 132 )
INTEGER NCMAX
PARAMETER ( NCMAX = 20 )
INTEGER NEED
PARAMETER ( NEED = 14 )
INTEGER LWORK
PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX*( NMAX+20 ) )
INTEGER MAXIN
PARAMETER ( MAXIN = 20 )
INTEGER MAXT
PARAMETER ( MAXT = 30 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
* ..
* .. Local Scalars ..
LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX,
$ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE,
$ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR,
$ ZBB, ZGG, ZHB
CHARACTER C1
CHARACTER*3 C3, PATH
CHARACTER*32 VNAME
CHARACTER*10 INTSTR
CHARACTER*80 LINE
INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
$ NK, NN, NPARMS, NRHS, NTYPES,
$ VERS_MAJOR, VERS_MINOR, VERS_PATCH
INTEGER*4 N_THREADS, ONE_THREAD
DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
$ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
$ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
$ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
$ PVAL( MAXIN )
INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
$ ISHFTS( MAXIN ), IACC22( MAXIN )
DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ),
$ RESULT( 500 )
COMPLEX*16 DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ),
$ X( 5*NMAX )
* ..
* .. Allocatable Arrays ..
INTEGER AllocateStatus
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RWORK, S
COMPLEX*16, DIMENSION(:), ALLOCATABLE :: WORK
COMPLEX*16, DIMENSION(:,:), ALLOCATABLE :: A, B, C
* ..
* .. External Functions ..
LOGICAL LSAMEN
DOUBLE PRECISION DLAMCH, DSECND
EXTERNAL LSAMEN, DLAMCH, DSECND
* ..
* .. External Subroutines ..
EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL,
$ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS,
$ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE,
$ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES,
$ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX,
$ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER,
$ ZDRGES3, ZDRGEV3,
$ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
$ SELOPT
* ..
* .. Arrays in Common ..
LOGICAL SELVAL( 20 )
INTEGER IPARMS( 100 )
DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
* ..
* .. Common blocks ..
COMMON / CENVIR / NPROC, NSHIFT, MAXB
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
COMMON / CLAENV / IPARMS
* ..
* .. Data statements ..
DATA INTSTR / '0123456789' /
DATA IOLDSD / 0, 0, 0, 1 /
* ..
* .. Allocate memory dynamically ..
*
ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
ALLOCATE ( WORK(LWORK), STAT = AllocateStatus )
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
* ..
* .. Executable Statements ..
*
A = 0.0
B = 0.0
C = 0.0
DC = 0.0
S1 = DSECND( )
FATAL = .FALSE.
NUNIT = NOUT
*
* Return to here to read multiple sets of data
*
10 CONTINUE
*
* Read the first line and set the 3-character test path
*
READ( NIN, FMT = '(A80)', END = 380 )LINE
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR.
$ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' )
ZEV = LSAMEN( 3, PATH, 'ZEV' )
ZES = LSAMEN( 3, PATH, 'ZES' )
ZVX = LSAMEN( 3, PATH, 'ZVX' )
ZSX = LSAMEN( 3, PATH, 'ZSX' )
ZGG = LSAMEN( 3, PATH, 'ZGG' )
ZGS = LSAMEN( 3, PATH, 'ZGS' )
ZGX = LSAMEN( 3, PATH, 'ZGX' )
ZGV = LSAMEN( 3, PATH, 'ZGV' )
ZXV = LSAMEN( 3, PATH, 'ZXV' )
ZHB = LSAMEN( 3, PATH, 'ZHB' )
ZBB = LSAMEN( 3, PATH, 'ZBB' )
GLM = LSAMEN( 3, PATH, 'GLM' )
GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
GSV = LSAMEN( 3, PATH, 'GSV' )
CSD = LSAMEN( 3, PATH, 'CSD' )
LSE = LSAMEN( 3, PATH, 'LSE' )
ZBL = LSAMEN( 3, PATH, 'ZBL' )
ZBK = LSAMEN( 3, PATH, 'ZBK' )
ZGL = LSAMEN( 3, PATH, 'ZGL' )
ZGK = LSAMEN( 3, PATH, 'ZGK' )
*
* Report values of parameters.
*
IF( PATH.EQ.' ' ) THEN
GO TO 10
ELSE IF( NEP ) THEN
WRITE( NOUT, FMT = 9987 )
ELSE IF( SEP ) THEN
WRITE( NOUT, FMT = 9986 )
ELSE IF( SVD ) THEN
WRITE( NOUT, FMT = 9985 )
ELSE IF( ZEV ) THEN
WRITE( NOUT, FMT = 9979 )
ELSE IF( ZES ) THEN
WRITE( NOUT, FMT = 9978 )
ELSE IF( ZVX ) THEN
WRITE( NOUT, FMT = 9977 )
ELSE IF( ZSX ) THEN
WRITE( NOUT, FMT = 9976 )
ELSE IF( ZGG ) THEN
WRITE( NOUT, FMT = 9975 )
ELSE IF( ZGS ) THEN
WRITE( NOUT, FMT = 9964 )
ELSE IF( ZGX ) THEN
WRITE( NOUT, FMT = 9965 )
ELSE IF( ZGV ) THEN
WRITE( NOUT, FMT = 9963 )
ELSE IF( ZXV ) THEN
WRITE( NOUT, FMT = 9962 )
ELSE IF( ZHB ) THEN
WRITE( NOUT, FMT = 9974 )
ELSE IF( ZBB ) THEN
WRITE( NOUT, FMT = 9967 )
ELSE IF( GLM ) THEN
WRITE( NOUT, FMT = 9971 )
ELSE IF( GQR ) THEN
WRITE( NOUT, FMT = 9970 )
ELSE IF( GSV ) THEN
WRITE( NOUT, FMT = 9969 )
ELSE IF( CSD ) THEN
WRITE( NOUT, FMT = 9960 )
ELSE IF( LSE ) THEN
WRITE( NOUT, FMT = 9968 )
ELSE IF( ZBL ) THEN
*
* ZGEBAL: Balancing
*
CALL ZCHKBL( NIN, NOUT )
GO TO 380
ELSE IF( ZBK ) THEN
*
* ZGEBAK: Back transformation
*
CALL ZCHKBK( NIN, NOUT )
GO TO 380
ELSE IF( ZGL ) THEN
*
* ZGGBAL: Balancing
*
CALL ZCHKGL( NIN, NOUT )
GO TO 380
ELSE IF( ZGK ) THEN
*
* ZGGBAK: Back transformation
*
CALL ZCHKGK( NIN, NOUT )
GO TO 380
ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN
*
* ZEC: Eigencondition estimation
*
READ( NIN, FMT = * )THRESH
CALL XLAENV( 1, 1 )
CALL XLAENV( 12, 1 )
TSTERR = .TRUE.
CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT )
GO TO 380
ELSE
WRITE( NOUT, FMT = 9992 )PATH
GO TO 380
END IF
CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
WRITE( NOUT, FMT = 9984 )
*
* Read the number of values of M, P, and N.
*
READ( NIN, FMT = * )NN
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
*
* Read the values of M
*
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
IF( SVD ) THEN
VNAME = ' M '
ELSE
VNAME = ' N '
END IF
DO 20 I = 1, NN
IF( MVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
FATAL = .TRUE.
END IF
20 CONTINUE
WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
END IF
*
* Read the values of P
*
IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
DO 30 I = 1, NN
IF( PVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
FATAL = .TRUE.
ELSE IF( PVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
FATAL = .TRUE.
END IF
30 CONTINUE
WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
END IF
*
* Read the values of N
*
IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
$ LSE ) THEN
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
DO 40 I = 1, NN
IF( NVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
FATAL = .TRUE.
END IF
40 CONTINUE
ELSE
DO 50 I = 1, NN
NVAL( I ) = MVAL( I )
50 CONTINUE
END IF
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
ELSE
WRITE( NOUT, FMT = 9983 )'N: ', NN
END IF
*
* Read the number of values of K, followed by the values of K
*
IF( ZHB .OR. ZBB ) THEN
READ( NIN, FMT = * )NK
READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
DO 60 I = 1, NK
IF( KVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
FATAL = .TRUE.
ELSE IF( KVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
FATAL = .TRUE.
END IF
60 CONTINUE
WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
END IF
*
IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN
*
* For the nonsymmetric QR driver routines, only one set of
* parameters is allowed.
*
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
$ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
IF( NBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( INMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( INWIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( INIBL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
FATAL = .TRUE.
ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
FATAL = .TRUE.
ELSE IF( IACC22( 1 ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
FATAL = .TRUE.
END IF
CALL XLAENV( 1, NBVAL( 1 ) )
CALL XLAENV( 2, NBMIN( 1 ) )
CALL XLAENV( 3, NXVAL( 1 ) )
CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
CALL XLAENV(13, INWIN( 1 ) )
CALL XLAENV(14, INIBL( 1 ) )
CALL XLAENV(15, ISHFTS( 1 ) )
CALL XLAENV(16, IACC22( 1 ) )
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
*
ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN
*
* For the nonsymmetric generalized driver routines, only one set of
* parameters is allowed.
*
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
$ NSVAL( 1 ), MXBVAL( 1 )
IF( NBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NSVAL( 1 ).LT.2 ) THEN
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
FATAL = .TRUE.
ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
FATAL = .TRUE.
END IF
CALL XLAENV( 1, NBVAL( 1 ) )
CALL XLAENV( 2, NBMIN( 1 ) )
CALL XLAENV( 3, NXVAL( 1 ) )
CALL XLAENV( 4, NSVAL( 1 ) )
CALL XLAENV( 8, MXBVAL( 1 ) )
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
$ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
*
* For the other paths, the number of parameters can be varied
* from the input file. Read the number of parameter values.
*
READ( NIN, FMT = * )NPARMS
IF( NPARMS.LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
NPARMS = 0
FATAL = .TRUE.
ELSE IF( NPARMS.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
NPARMS = 0
FATAL = .TRUE.
END IF
*
* Read the values of NB
*
IF( .NOT.ZBB ) THEN
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
DO 70 I = 1, NPARMS
IF( NBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NBVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
FATAL = .TRUE.
END IF
70 CONTINUE
WRITE( NOUT, FMT = 9983 )'NB: ',
$ ( NBVAL( I ), I = 1, NPARMS )
END IF
*
* Read the values of NBMIN
*
IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN
READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
DO 80 I = 1, NPARMS
IF( NBMIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
FATAL = .TRUE.
ELSE IF( NBMIN( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
FATAL = .TRUE.
END IF
80 CONTINUE
WRITE( NOUT, FMT = 9983 )'NBMIN:',
$ ( NBMIN( I ), I = 1, NPARMS )
ELSE
DO 90 I = 1, NPARMS
NBMIN( I ) = 1
90 CONTINUE
END IF
*
* Read the values of NX
*
IF( NEP .OR. SEP .OR. SVD ) THEN
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
DO 100 I = 1, NPARMS
IF( NXVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NXVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
FATAL = .TRUE.
END IF
100 CONTINUE
WRITE( NOUT, FMT = 9983 )'NX: ',
$ ( NXVAL( I ), I = 1, NPARMS )
ELSE
DO 110 I = 1, NPARMS
NXVAL( I ) = 1
110 CONTINUE
END IF
*
* Read the values of NSHIFT (if ZGG) or NRHS (if SVD
* or ZBB).
*
IF( SVD .OR. ZBB .OR. ZGG ) THEN
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
DO 120 I = 1, NPARMS
IF( NSVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NSVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
FATAL = .TRUE.
END IF
120 CONTINUE
WRITE( NOUT, FMT = 9983 )'NS: ',
$ ( NSVAL( I ), I = 1, NPARMS )
ELSE
DO 130 I = 1, NPARMS
NSVAL( I ) = 1
130 CONTINUE
END IF
*
* Read the values for MAXB.
*
IF( ZGG ) THEN
READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
DO 140 I = 1, NPARMS
IF( MXBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
FATAL = .TRUE.
END IF
140 CONTINUE
WRITE( NOUT, FMT = 9983 )'MAXB: ',
$ ( MXBVAL( I ), I = 1, NPARMS )
ELSE
DO 150 I = 1, NPARMS
MXBVAL( I ) = 1
150 CONTINUE
END IF
*
* Read the values for INMIN.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
DO 540 I = 1, NPARMS
IF( INMIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
FATAL = .TRUE.
END IF
540 CONTINUE
WRITE( NOUT, FMT = 9983 )'INMIN: ',
$ ( INMIN( I ), I = 1, NPARMS )
ELSE
DO 550 I = 1, NPARMS
INMIN( I ) = 1
550 CONTINUE
END IF
*
* Read the values for INWIN.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
DO 560 I = 1, NPARMS
IF( INWIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
FATAL = .TRUE.
END IF
560 CONTINUE
WRITE( NOUT, FMT = 9983 )'INWIN: ',
$ ( INWIN( I ), I = 1, NPARMS )
ELSE
DO 570 I = 1, NPARMS
INWIN( I ) = 1
570 CONTINUE
END IF
*
* Read the values for INIBL.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
DO 580 I = 1, NPARMS
IF( INIBL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
FATAL = .TRUE.
END IF
580 CONTINUE
WRITE( NOUT, FMT = 9983 )'INIBL: ',
$ ( INIBL( I ), I = 1, NPARMS )
ELSE
DO 590 I = 1, NPARMS
INIBL( I ) = 1
590 CONTINUE
END IF
*
* Read the values for ISHFTS.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
DO 600 I = 1, NPARMS
IF( ISHFTS( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
FATAL = .TRUE.
END IF
600 CONTINUE
WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
$ ( ISHFTS( I ), I = 1, NPARMS )
ELSE
DO 610 I = 1, NPARMS
ISHFTS( I ) = 1
610 CONTINUE
END IF
*
* Read the values for IACC22.
*
IF( NEP .OR. ZGG ) THEN
READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
DO 620 I = 1, NPARMS
IF( IACC22( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
FATAL = .TRUE.
END IF
620 CONTINUE
WRITE( NOUT, FMT = 9983 )'IACC22: ',
$ ( IACC22( I ), I = 1, NPARMS )
ELSE
DO 630 I = 1, NPARMS
IACC22( I ) = 1
630 CONTINUE
END IF
*
* Read the values for NBCOL.
*
IF( ZGG ) THEN
READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
DO 160 I = 1, NPARMS
IF( NBCOL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
FATAL = .TRUE.
ELSE IF( NBCOL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
FATAL = .TRUE.
END IF
160 CONTINUE
WRITE( NOUT, FMT = 9983 )'NBCOL:',
$ ( NBCOL( I ), I = 1, NPARMS )
ELSE
DO 170 I = 1, NPARMS
NBCOL( I ) = 1
170 CONTINUE
END IF
END IF
*
* Calculate and print the machine dependent constants.
*
WRITE( NOUT, FMT = * )
EPS = DLAMCH( 'Underflow threshold' )
WRITE( NOUT, FMT = 9981 )'underflow', EPS
EPS = DLAMCH( 'Overflow threshold' )
WRITE( NOUT, FMT = 9981 )'overflow ', EPS
EPS = DLAMCH( 'Epsilon' )
WRITE( NOUT, FMT = 9981 )'precision', EPS
*
* Read the threshold value for the test ratios.
*
READ( NIN, FMT = * )THRESH
WRITE( NOUT, FMT = 9982 )THRESH
IF( SEP .OR. SVD .OR. ZGG ) THEN
*
* Read the flag that indicates whether to test LAPACK routines.
*
READ( NIN, FMT = * )TSTCHK
*
* Read the flag that indicates whether to test driver routines.
*
READ( NIN, FMT = * )TSTDRV
END IF
*
* Read the flag that indicates whether to test the error exits.
*
READ( NIN, FMT = * )TSTERR
*
* Read the code describing how to set the random number seed.
*
READ( NIN, FMT = * )NEWSD
*
* If NEWSD = 2, read another line with 4 integers for the seed.
*
IF( NEWSD.EQ.2 )
$ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
*
DO 180 I = 1, 4
ISEED( I ) = IOLDSD( I )
180 CONTINUE
*
IF( FATAL ) THEN
WRITE( NOUT, FMT = 9999 )
STOP
END IF
*
* Read the input lines indicating the test path and its parameters.
* The first three characters indicate the test path, and the number
* of test matrix types must be the first nonblank item in columns
* 4-80.
*
190 CONTINUE
*
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
*
200 CONTINUE
READ( NIN, FMT = '(A80)', END = 380 )LINE
C3 = LINE( 1: 3 )
LENP = LEN( LINE )
I = 3
ITMP = 0
I1 = 0
210 CONTINUE
I = I + 1
IF( I.GT.LENP ) THEN
IF( I1.GT.0 ) THEN
GO TO 240
ELSE
NTYPES = MAXT
GO TO 240
END IF
END IF
IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
I1 = I
C1 = LINE( I1: I1 )
*
* Check that a valid integer was read
*
DO 220 K = 1, 10
IF( C1.EQ.INTSTR( K: K ) ) THEN
IC = K - 1
GO TO 230
END IF
220 CONTINUE
WRITE( NOUT, FMT = 9991 )I, LINE
GO TO 200
230 CONTINUE
ITMP = 10*ITMP + IC
GO TO 210
ELSE IF( I1.GT.0 ) THEN
GO TO 240
ELSE
GO TO 210
END IF
240 CONTINUE
NTYPES = ITMP
*
* Skip the tests if NTYPES is <= 0.
*
IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR.
$ ZGS ) .AND. NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
GO TO 200
END IF
*
ELSE
IF( ZGX )
$ C3 = 'ZGX'
IF( ZXV )
$ C3 = 'ZXV'
END IF
*
* Reset the random number seed.
*
IF( NEWSD.EQ.0 ) THEN
DO 250 K = 1, 4
ISEED( K ) = IOLDSD( K )
250 CONTINUE
END IF
*
IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
*
* -------------------------------------
* NEP: Nonsymmetric Eigenvalue Problem
* -------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
* NS = number of shifts
* MAXB = minimum submatrix size
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL ZERRHS( 'ZHSEQR', NOUT )
DO 270 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
CALL XLAENV(13, INWIN( I ) )
CALL XLAENV(14, INIBL( I ) )
CALL XLAENV(15, ISHFTS( I ) )
CALL XLAENV(16, IACC22( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 260 K = 1, 4
ISEED( K ) = IOLDSD( K )
260 CONTINUE
END IF
WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I ), MAX( 11, INMIN(I)),
$ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
$ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ),
$ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
$ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO
270 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' )
$ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
* ----------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 1, 1 )
CALL XLAENV( 9, 25 )
IF( TSTERR ) THEN
#if defined(_OPENMP)
N_THREADS = OMP_GET_MAX_THREADS()
ONE_THREAD = 1
CALL OMP_SET_NUM_THREADS(ONE_THREAD)
#endif
CALL ZERRST( 'ZST', NOUT )
#if defined(_OPENMP)
CALL OMP_SET_NUM_THREADS(N_THREADS)
#endif
END IF
DO 290 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 280 K = 1, 4
ISEED( K ) = IOLDSD( K )
280 CONTINUE
END IF
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
$ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
$ RESULT, INFO )
ELSE
CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
$ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
$ RESULT, INFO )
ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO
END IF
IF( TSTDRV ) THEN
IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
$ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
$ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
$ LWORK, IWORK, LIWORK, RESULT, INFO )
ELSE
CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
$ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
$ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
$ LWORK, IWORK, LIWORK, RESULT, INFO )
ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO
END IF
290 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN
*
* ----------------------------------------------
* ZSG: Hermitian Generalized Eigenvalue Problem
* ----------------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 9, 25 )
DO 310 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 300 K = 1, 4
ISEED( K ) = IOLDSD( K )
300 CONTINUE
END IF
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
* $ INFO )
CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
$ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
$ A( 1, 7 ), WORK, LWORK, RWORK, LWORK,
$ IWORK, LIWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO
END IF
310 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
*
* ----------------------------------
* SVD: Singular Value Decomposition
* ----------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
* NRHS = number of right hand sides
*
MAXTYP = 16
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 9, 25 )
*
* Test the error exits
*
CALL XLAENV( 1, 1 )
IF( TSTERR .AND. TSTCHK )
$ CALL ZERRBD( 'ZBD', NOUT )
IF( TSTERR .AND. TSTDRV )
$ CALL ZERRED( 'ZBD', NOUT )
*
DO 330 I = 1, NPARMS
NRHS = NSVAL( I )
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
IF( NEWSD.EQ.0 ) THEN
DO 320 K = 1, 4
ISEED( K ) = IOLDSD( K )
320 CONTINUE
END IF
WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I ), NRHS
IF( TSTCHK ) THEN
CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
$ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ),
$ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ),
$ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ),
$ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ),
$ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO
END IF
IF( TSTDRV )
$ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
$ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
$ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ),
$ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT,
$ INFO )
330 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN
*
* --------------------------------------------
* ZEV: Nonsymmetric Eigenvalue Problem Driver
* ZGEEV (eigenvalues and eigenvectors)
* --------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
$ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN
*
* --------------------------------------------
* ZES: Nonsymmetric Eigenvalue Problem Driver
* ZGEES (Schur form)
* --------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX,
$ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN
*
* --------------------------------------------------------------
* ZVX: Nonsymmetric Eigenvalue Problem Expert Driver
* ZGEEVX (eigenvalues, eigenvectors and condition numbers)
* --------------------------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
$ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
$ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
$ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK,
$ RWORK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN
*
* ---------------------------------------------------
* ZSX: Nonsymmetric Eigenvalue Problem Expert Driver
* ZGEESX (Schur form and condition numbers)
* ---------------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ),
$ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK,
$ LOGWRK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN
*
* -------------------------------------------------
* ZGG: Generalized Nonsymmetric Eigenvalue Problem
* -------------------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NS = number of shifts
* MAXB = minimum submatrix size
* IACC22: structured matrix multiply
* NBCOL = minimum column dimension for blocks
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV(1,1)
IF( TSTCHK .AND. TSTERR )
$ CALL ZERRGG( C3, NOUT )
DO 350 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 4, NSVAL( I ) )
CALL XLAENV( 8, MXBVAL( I ) )
CALL XLAENV( 16, IACC22( I ) )
CALL XLAENV( 5, NBCOL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 340 K = 1, 4
ISEED( K ) = IOLDSD( K )
340 CONTINUE
END IF
WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
$ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
TSTDIF = .FALSE.
THRSHN = 10.D0
IF( TSTCHK ) THEN
CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
$ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ),
$ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK,
$ LWORK, RWORK, LOGWRK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO
END IF
350 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN
*
* -------------------------------------------------
* ZGS: Generalized Nonsymmetric Eigenvalue Problem
* ZGGES (Schur form)
* -------------------------------------------------
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
$ RESULT, LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO
*
* Blocked version
*
CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
$ RESULT, LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( ZGX ) THEN
*
* -------------------------------------------------
* ZGX Generalized Nonsymmetric Eigenvalue Problem
* ZGGESX (Schur form and condition numbers)
* -------------------------------------------------
*
MAXTYP = 5
NTYPES = MAXTYP
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 5, 2 )
CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C,
$ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK,
$ LIWORK, LOGWRK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN
*
* -------------------------------------------------
* ZGV: Generalized Nonsymmetric Eigenvalue Problem
* ZGGEV (Eigenvalue/vector form)
* -------------------------------------------------
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO
*
* Blocked version
*
CALL XLAENV(16,2)
CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( ZXV ) THEN
*
* -------------------------------------------------
* ZXV: Generalized Nonsymmetric Eigenvalue Problem
* ZGGEVX (eigenvalue/vector with condition numbers)
* -------------------------------------------------
*
MAXTYP = 2
NTYPES = MAXTYP
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL ZERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ),
$ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK,
$ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT,
$ LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN
*
* ------------------------------
* ZHB: Hermitian Band Reduction
* ------------------------------
*
MAXTYP = 15
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR ) THEN
#if defined(_OPENMP)
N_THREADS = OMP_GET_MAX_THREADS()
ONE_THREAD = 1
CALL OMP_SET_NUM_THREADS(ONE_THREAD)
#endif
CALL ZERRST( 'ZHB', NOUT )
#if defined(_OPENMP)
CALL OMP_SET_NUM_THREADS(N_THREADS)
#endif
END IF
* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
* $ INFO )
CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
$ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ),
$ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ),
$ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO
*
ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN
*
* ------------------------------
* ZBB: General Band Reduction
* ------------------------------
*
MAXTYP = 15
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
DO 370 I = 1, NPARMS
NRHS = NSVAL( I )
*
IF( NEWSD.EQ.0 ) THEN
DO 360 K = 1, 4
ISEED( K ) = IOLDSD( K )
360 CONTINUE
END IF
WRITE( NOUT, FMT = 9966 )C3, NRHS
CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
$ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ),
$ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
$ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO
370 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
*
* -----------------------------------------
* GLM: Generalized Linear Regression Model
* -----------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL ZERRGG( 'GLM', NOUT )
CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO
*
ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
*
* ------------------------------------------
* GQR: Generalized QR and RQ factorizations
* ------------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL ZERRGG( 'GQR', NOUT )
CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
$ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN,
$ NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO
*
ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
*
* ----------------------------------------------
* GSV: Generalized Singular Value Decomposition
* ----------------------------------------------
*
CALL XLAENV(1,1)
IF( TSTERR )
$ CALL ZERRGG( 'GSV', NOUT )
CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA,
$ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO
*
ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
*
* ----------------------------------------------
* CSD: CS Decomposition
* ----------------------------------------------
*
CALL XLAENV(1,1)
IF( TSTERR )
$ CALL ZERRGG( 'CSD', NOUT )
CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
$ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK,
$ DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO
*
ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
*
* --------------------------------------
* LSE: Constrained Linear Least Squares
* --------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL ZERRGG( 'LSE', NOUT )
CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO
ELSE
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9992 )C3
END IF
IF( .NOT.( ZGX .OR. ZXV ) )
$ GO TO 190
380 CONTINUE
WRITE( NOUT, FMT = 9994 )
S2 = DSECND( )
WRITE( NOUT, FMT = 9993 )S2 - S1
*
DEALLOCATE (S, STAT = AllocateStatus)
DEALLOCATE (A, STAT = AllocateStatus)
DEALLOCATE (B, STAT = AllocateStatus)
DEALLOCATE (C, STAT = AllocateStatus)
DEALLOCATE (RWORK, STAT = AllocateStatus)
DEALLOCATE (WORK, STAT = AllocateStatus)
*
9999 FORMAT( / ' Execution not attempted due to input errors' )
9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
$ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
$ ', NRHS =', I4 )
9994 FORMAT( / / ' End of tests' )
9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
9992 FORMAT( 1X, A3, ': Unrecognized path name' )
9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
$ ' of input', ' line:', / A79 )
9990 FORMAT( / / 1X, A3, ' routines were not tested' )
9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
$ I6 )
9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
$ I6 )
9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' )
9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
9984 FORMAT( / ' The following parameter values will be used:' )
9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
$ 'less than', F8.2, / )
9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
$ / ' ZGEEV (eigenvalues and eigevectors)' )
9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
$ / ' ZGEES (Schur form)' )
9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
$ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and',
$ ' condition numbers)' )
9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
$ ' Driver', / ' ZGEESX (Schur form and condition',
$ ' numbers)' )
9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem routines' )
9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ',
$ 'matrix to real tridiagonal form)' )
9973 FORMAT( / 1X, 71( '-' ) )
9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
$ 'routines' )
9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
9969 FORMAT( / ' Tests of the Generalized Singular Value',
$ ' Decomposition routines' )
9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ',
$ 'matrix to real bidiagonal form)' )
9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Expert Driver ZGGESX' )
9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Driver ZGGES' )
9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Driver ZGGEV' )
9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Expert Driver ZGGEVX' )
9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
$ ', INMIN=', I4,
$ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
$ ', IACC22 =', I4)
9960 FORMAT( / ' Tests of the CS Decomposition routines' )
*
* End of ZCHKEE
*
END