You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2551 lines
92 KiB
2551 lines
92 KiB
*> \brief \b ZCHKEE
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* PROGRAM ZCHKEE
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix
|
|
*> eigenvalue problem. The test paths in this version are
|
|
*>
|
|
*> NEP (Nonsymmetric Eigenvalue Problem):
|
|
*> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR
|
|
*>
|
|
*> SEP (Hermitian Eigenvalue Problem):
|
|
*> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC,
|
|
*> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X),
|
|
*> ZHEEVD, ZHBEVD, ZHPEVD
|
|
*>
|
|
*> SVD (Singular Value Decomposition):
|
|
*> Test ZGEBRD, ZUNGBR, and ZBDSQR
|
|
*> and the drivers ZGESVD, ZGESDD
|
|
*>
|
|
*> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver):
|
|
*> Test ZGEEV
|
|
*>
|
|
*> ZES (Nonsymmetric Schur form Driver):
|
|
*> Test ZGEES
|
|
*>
|
|
*> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
|
|
*> Test ZGEEVX
|
|
*>
|
|
*> ZSX (Nonsymmetric Schur form Expert Driver):
|
|
*> Test ZGEESX
|
|
*>
|
|
*> ZGG (Generalized Nonsymmetric Eigenvalue Problem):
|
|
*> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC
|
|
*>
|
|
*> ZGS (Generalized Nonsymmetric Schur form Driver):
|
|
*> Test ZGGES
|
|
*>
|
|
*> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
|
|
*> Test ZGGEV
|
|
*>
|
|
*> ZGX (Generalized Nonsymmetric Schur form Expert Driver):
|
|
*> Test ZGGESX
|
|
*>
|
|
*> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
|
|
*> Test ZGGEVX
|
|
*>
|
|
*> ZSG (Hermitian Generalized Eigenvalue Problem):
|
|
*> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD,
|
|
*> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX
|
|
*>
|
|
*> ZHB (Hermitian Band Eigenvalue Problem):
|
|
*> Test ZHBTRD
|
|
*>
|
|
*> ZBB (Band Singular Value Decomposition):
|
|
*> Test ZGBBRD
|
|
*>
|
|
*> ZEC (Eigencondition estimation):
|
|
*> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN
|
|
*>
|
|
*> ZBL (Balancing a general matrix)
|
|
*> Test ZGEBAL
|
|
*>
|
|
*> ZBK (Back transformation on a balanced matrix)
|
|
*> Test ZGEBAK
|
|
*>
|
|
*> ZGL (Balancing a matrix pair)
|
|
*> Test ZGGBAL
|
|
*>
|
|
*> ZGK (Back transformation on a matrix pair)
|
|
*> Test ZGGBAK
|
|
*>
|
|
*> GLM (Generalized Linear Regression Model):
|
|
*> Tests ZGGGLM
|
|
*>
|
|
*> GQR (Generalized QR and RQ factorizations):
|
|
*> Tests ZGGQRF and ZGGRQF
|
|
*>
|
|
*> GSV (Generalized Singular Value Decomposition):
|
|
*> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT
|
|
*>
|
|
*> CSD (CS decomposition):
|
|
*> Tests ZUNCSD
|
|
*>
|
|
*> LSE (Constrained Linear Least Squares):
|
|
*> Tests ZGGLSE
|
|
*>
|
|
*> Each test path has a different set of inputs, but the data sets for
|
|
*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
|
|
*> single input file. The first line of input should contain one of the
|
|
*> 3-character path names in columns 1-3. The number of remaining lines
|
|
*> depends on what is found on the first line.
|
|
*>
|
|
*> The number of matrix types used in testing is often controllable from
|
|
*> the input file. The number of matrix types for each path, and the
|
|
*> test routine that describes them, is as follows:
|
|
*>
|
|
*> Path name(s) Types Test routine
|
|
*>
|
|
*> ZHS or NEP 21 ZCHKHS
|
|
*> ZST or SEP 21 ZCHKST (routines)
|
|
*> 18 ZDRVST (drivers)
|
|
*> ZBD or SVD 16 ZCHKBD (routines)
|
|
*> 5 ZDRVBD (drivers)
|
|
*> ZEV 21 ZDRVEV
|
|
*> ZES 21 ZDRVES
|
|
*> ZVX 21 ZDRVVX
|
|
*> ZSX 21 ZDRVSX
|
|
*> ZGG 26 ZCHKGG (routines)
|
|
*> ZGS 26 ZDRGES
|
|
*> ZGX 5 ZDRGSX
|
|
*> ZGV 26 ZDRGEV
|
|
*> ZXV 2 ZDRGVX
|
|
*> ZSG 21 ZDRVSG
|
|
*> ZHB 15 ZCHKHB
|
|
*> ZBB 15 ZCHKBB
|
|
*> ZEC - ZCHKEC
|
|
*> ZBL - ZCHKBL
|
|
*> ZBK - ZCHKBK
|
|
*> ZGL - ZCHKGL
|
|
*> ZGK - ZCHKGK
|
|
*> GLM 8 ZCKGLM
|
|
*> GQR 8 ZCKGQR
|
|
*> GSV 8 ZCKGSV
|
|
*> CSD 3 ZCKCSD
|
|
*> LSE 8 ZCKLSE
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> NEP input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of N.
|
|
*>
|
|
*> line 3: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix dimension N.
|
|
*>
|
|
*> line 4: NPARMS, INTEGER
|
|
*> Number of values of the parameters NB, NBMIN, NX, NS, and
|
|
*> MAXB.
|
|
*>
|
|
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the blocksize NB.
|
|
*>
|
|
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
|
|
*> The values for the minimum blocksize NBMIN.
|
|
*>
|
|
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the crossover point NX.
|
|
*>
|
|
*> line 8: INMIN, INTEGER array, dimension (NPARMS)
|
|
*> LAHQR vs TTQRE crossover point, >= 11
|
|
*>
|
|
*> line 9: INWIN, INTEGER array, dimension (NPARMS)
|
|
*> recommended deflation window size
|
|
*>
|
|
*> line 10: INIBL, INTEGER array, dimension (NPARMS)
|
|
*> nibble crossover point
|
|
*>
|
|
*> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
|
|
*> number of simultaneous shifts)
|
|
*>
|
|
*> line 12: IACC22, INTEGER array, dimension (NPARMS)
|
|
*> select structured matrix multiply: 0, 1 or 2)
|
|
*>
|
|
*> line 13: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold. To have all of the test
|
|
*> ratios printed, use THRESH = 0.0 .
|
|
*>
|
|
*> line 14: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 14 was 2:
|
|
*>
|
|
*> line 15: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
|
|
*> the user to specify the matrix types. Each line contains
|
|
*> a 3-character path name in columns 1-3, and the number
|
|
*> of matrix types must be the first nonblank item in columns
|
|
*> 4-80. If the number of matrix types is at least 1 but is
|
|
*> less than the maximum number of possible types, a second
|
|
*> line will be read to get the numbers of the matrix types to
|
|
*> be used. For example,
|
|
*> NEP 21
|
|
*> requests all of the matrix types for the nonsymmetric
|
|
*> eigenvalue problem, while
|
|
*> NEP 4
|
|
*> 9 10 11 12
|
|
*> requests only matrices of type 9, 10, 11, and 12.
|
|
*>
|
|
*> The valid 3-character path names are 'NEP' or 'ZHS' for the
|
|
*> nonsymmetric eigenvalue routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> SEP or ZSG input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of N.
|
|
*>
|
|
*> line 3: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix dimension N.
|
|
*>
|
|
*> line 4: NPARMS, INTEGER
|
|
*> Number of values of the parameters NB, NBMIN, and NX.
|
|
*>
|
|
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the blocksize NB.
|
|
*>
|
|
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
|
|
*> The values for the minimum blocksize NBMIN.
|
|
*>
|
|
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the crossover point NX.
|
|
*>
|
|
*> line 8: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 9: TSTCHK, LOGICAL
|
|
*> Flag indicating whether or not to test the LAPACK routines.
|
|
*>
|
|
*> line 10: TSTDRV, LOGICAL
|
|
*> Flag indicating whether or not to test the driver routines.
|
|
*>
|
|
*> line 11: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 12: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 12 was 2:
|
|
*>
|
|
*> line 13: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 13-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The valid 3-character path names are 'SEP' or 'ZST' for the
|
|
*> Hermitian eigenvalue routines and driver routines, and
|
|
*> 'ZSG' for the routines for the Hermitian generalized
|
|
*> eigenvalue problem.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> SVD input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix row dimension M.
|
|
*>
|
|
*> line 4: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix column dimension N.
|
|
*>
|
|
*> line 5: NPARMS, INTEGER
|
|
*> Number of values of the parameter NB, NBMIN, NX, and NRHS.
|
|
*>
|
|
*> line 6: NBVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the blocksize NB.
|
|
*>
|
|
*> line 7: NBMIN, INTEGER array, dimension (NPARMS)
|
|
*> The values for the minimum blocksize NBMIN.
|
|
*>
|
|
*> line 8: NXVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the crossover point NX.
|
|
*>
|
|
*> line 9: NSVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the number of right hand sides NRHS.
|
|
*>
|
|
*> line 10: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 11: TSTCHK, LOGICAL
|
|
*> Flag indicating whether or not to test the LAPACK routines.
|
|
*>
|
|
*> line 12: TSTDRV, LOGICAL
|
|
*> Flag indicating whether or not to test the driver routines.
|
|
*>
|
|
*> line 13: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 14: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 14 was 2:
|
|
*>
|
|
*> line 15: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 15-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path names are 'SVD' or 'ZBD' for both the
|
|
*> SVD routines and the SVD driver routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZEV and ZES data files:
|
|
*>
|
|
*> line 1: 'ZEV' or 'ZES' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NSIZES, INTEGER
|
|
*> Number of sizes of matrices to use. Should be at least 0
|
|
*> and at most 20. If NSIZES = 0, no testing is done
|
|
*> (although the remaining 3 lines are still read).
|
|
*>
|
|
*> line 3: NN, INTEGER array, dimension(NSIZES)
|
|
*> Dimensions of matrices to be tested.
|
|
*>
|
|
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*> These integer parameters determine how blocking is done
|
|
*> (see ILAENV for details)
|
|
*> NB : block size
|
|
*> NBMIN : minimum block size
|
|
*> NX : minimum dimension for blocking
|
|
*> NS : number of shifts in xHSEQR
|
|
*> NBCOL : minimum column dimension for blocking
|
|
*>
|
|
*> line 5: THRESH, REAL
|
|
*> The test threshold against which computed residuals are
|
|
*> compared. Should generally be in the range from 10. to 20.
|
|
*> If it is 0., all test case data will be printed.
|
|
*>
|
|
*> line 6: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 6 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 8 and following: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'ZEV' to test CGEEV, or
|
|
*> 'ZES' to test CGEES.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> The ZVX data has two parts. The first part is identical to ZEV,
|
|
*> and the second part consists of test matrices with precomputed
|
|
*> solutions.
|
|
*>
|
|
*> line 1: 'ZVX' in columns 1-3.
|
|
*>
|
|
*> line 2: NSIZES, INTEGER
|
|
*> If NSIZES = 0, no testing of randomly generated examples
|
|
*> is done, but any precomputed examples are tested.
|
|
*>
|
|
*> line 3: NN, INTEGER array, dimension(NSIZES)
|
|
*>
|
|
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*>
|
|
*> line 5: THRESH, REAL
|
|
*>
|
|
*> line 6: NEWSD, INTEGER
|
|
*>
|
|
*> If line 6 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*>
|
|
*> lines 8 and following: The first line contains 'ZVX' in columns 1-3
|
|
*> followed by the number of matrix types, possibly with
|
|
*> a second line to specify certain matrix types.
|
|
*> If the number of matrix types = 0, no testing of randomly
|
|
*> generated examples is done, but any precomputed examples
|
|
*> are tested.
|
|
*>
|
|
*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is
|
|
*> its dimension. The first line contains the dimension N and
|
|
*> ISRT (two integers). ISRT indicates whether the last N lines
|
|
*> are sorted by increasing real part of the eigenvalue
|
|
*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next
|
|
*> N**2 lines contain the matrix rowwise, one entry per line.
|
|
*> The last N lines correspond to each eigenvalue. Each of
|
|
*> these last N lines contains 4 real values: the real part of
|
|
*> the eigenvalues, the imaginary part of the eigenvalue, the
|
|
*> reciprocal condition number of the eigenvalues, and the
|
|
*> reciprocal condition number of the vector eigenvector. The
|
|
*> end of data is indicated by dimension N=0. Even if no data
|
|
*> is to be tested, there must be at least one line containing
|
|
*> N=0.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> The ZSX data is like ZVX. The first part is identical to ZEV, and the
|
|
*> second part consists of test matrices with precomputed solutions.
|
|
*>
|
|
*> line 1: 'ZSX' in columns 1-3.
|
|
*>
|
|
*> line 2: NSIZES, INTEGER
|
|
*> If NSIZES = 0, no testing of randomly generated examples
|
|
*> is done, but any precomputed examples are tested.
|
|
*>
|
|
*> line 3: NN, INTEGER array, dimension(NSIZES)
|
|
*>
|
|
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*>
|
|
*> line 5: THRESH, REAL
|
|
*>
|
|
*> line 6: NEWSD, INTEGER
|
|
*>
|
|
*> If line 6 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*>
|
|
*> lines 8 and following: The first line contains 'ZSX' in columns 1-3
|
|
*> followed by the number of matrix types, possibly with
|
|
*> a second line to specify certain matrix types.
|
|
*> If the number of matrix types = 0, no testing of randomly
|
|
*> generated examples is done, but any precomputed examples
|
|
*> are tested.
|
|
*>
|
|
*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is
|
|
*> its dimension. The first line contains the dimension N, the
|
|
*> dimension M of an invariant subspace, and ISRT. The second
|
|
*> line contains M integers, identifying the eigenvalues in the
|
|
*> invariant subspace (by their position in a list of
|
|
*> eigenvalues ordered by increasing real part (if ISRT=0) or
|
|
*> by increasing imaginary part (if ISRT=1)). The next N**2
|
|
*> lines contain the matrix rowwise. The last line contains the
|
|
*> reciprocal condition number for the average of the selected
|
|
*> eigenvalues, and the reciprocal condition number for the
|
|
*> corresponding right invariant subspace. The end of data in
|
|
*> indicated by a line containing N=0, M=0, and ISRT = 0. Even
|
|
*> if no data is to be tested, there must be at least one line
|
|
*> containing N=0, M=0 and ISRT=0.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZGG input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of N.
|
|
*>
|
|
*> line 3: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix dimension N.
|
|
*>
|
|
*> line 4: NPARMS, INTEGER
|
|
*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and
|
|
*> MAXB.
|
|
*>
|
|
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the blocksize NB.
|
|
*>
|
|
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
|
|
*> The values for NBMIN, the minimum row dimension for blocks.
|
|
*>
|
|
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the number of shifts.
|
|
*>
|
|
*> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for MAXB, used in determining minimum blocksize.
|
|
*>
|
|
*> line 9: IACC22, INTEGER array, dimension (NPARMS)
|
|
*> select structured matrix multiply: 1 or 2)
|
|
*>
|
|
*> line 10: NBCOL, INTEGER array, dimension (NPARMS)
|
|
*> The values for NBCOL, the minimum column dimension for
|
|
*> blocks.
|
|
*>
|
|
*> line 11: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 12: TSTCHK, LOGICAL
|
|
*> Flag indicating whether or not to test the LAPACK routines.
|
|
*>
|
|
*> line 13: TSTDRV, LOGICAL
|
|
*> Flag indicating whether or not to test the driver routines.
|
|
*>
|
|
*> line 14: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 15: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 15 was 2:
|
|
*>
|
|
*> line 16: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 17-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'ZGG' for the generalized
|
|
*> eigenvalue problem routines and driver routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZGS and ZGV input files:
|
|
*>
|
|
*> line 1: 'ZGS' or 'ZGV' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of N.
|
|
*>
|
|
*> line 3: NVAL, INTEGER array, dimension(NN)
|
|
*> Dimensions of matrices to be tested.
|
|
*>
|
|
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*> These integer parameters determine how blocking is done
|
|
*> (see ILAENV for details)
|
|
*> NB : block size
|
|
*> NBMIN : minimum block size
|
|
*> NX : minimum dimension for blocking
|
|
*> NS : number of shifts in xHGEQR
|
|
*> NBCOL : minimum column dimension for blocking
|
|
*>
|
|
*> line 5: THRESH, REAL
|
|
*> The test threshold against which computed residuals are
|
|
*> compared. Should generally be in the range from 10. to 20.
|
|
*> If it is 0., all test case data will be printed.
|
|
*>
|
|
*> line 6: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits.
|
|
*>
|
|
*> line 7: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 17 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 7-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'ZGS' for the generalized
|
|
*> eigenvalue problem routines and driver routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZGX input file:
|
|
*> line 1: 'ZGX' in columns 1 to 3.
|
|
*>
|
|
*> line 2: N, INTEGER
|
|
*> Value of N.
|
|
*>
|
|
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*> These integer parameters determine how blocking is done
|
|
*> (see ILAENV for details)
|
|
*> NB : block size
|
|
*> NBMIN : minimum block size
|
|
*> NX : minimum dimension for blocking
|
|
*> NS : number of shifts in xHGEQR
|
|
*> NBCOL : minimum column dimension for blocking
|
|
*>
|
|
*> line 4: THRESH, REAL
|
|
*> The test threshold against which computed residuals are
|
|
*> compared. Should generally be in the range from 10. to 20.
|
|
*> Information will be printed about each test for which the
|
|
*> test ratio is greater than or equal to the threshold.
|
|
*>
|
|
*> line 5: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 6: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 6 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> If line 2 was 0:
|
|
*>
|
|
*> line 7-EOF: Precomputed examples are tested.
|
|
*>
|
|
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
|
|
*> its dimension. The first line contains the dimension (a
|
|
*> single integer). The next line contains an integer k such
|
|
*> that only the last k eigenvalues will be selected and appear
|
|
*> in the leading diagonal blocks of $A$ and $B$. The next N*N
|
|
*> lines contain the matrix A, one element per line. The next N*N
|
|
*> lines contain the matrix B. The last line contains the
|
|
*> reciprocal of the eigenvalue cluster condition number and the
|
|
*> reciprocal of the deflating subspace (associated with the
|
|
*> selected eigencluster) condition number. The end of data is
|
|
*> indicated by dimension N=0. Even if no data is to be tested,
|
|
*> there must be at least one line containing N=0.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZXV input files:
|
|
*> line 1: 'ZXV' in columns 1 to 3.
|
|
*>
|
|
*> line 2: N, INTEGER
|
|
*> Value of N.
|
|
*>
|
|
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
|
|
*> These integer parameters determine how blocking is done
|
|
*> (see ILAENV for details)
|
|
*> NB : block size
|
|
*> NBMIN : minimum block size
|
|
*> NX : minimum dimension for blocking
|
|
*> NS : number of shifts in xHGEQR
|
|
*> NBCOL : minimum column dimension for blocking
|
|
*>
|
|
*> line 4: THRESH, REAL
|
|
*> The test threshold against which computed residuals are
|
|
*> compared. Should generally be in the range from 10. to 20.
|
|
*> Information will be printed about each test for which the
|
|
*> test ratio is greater than or equal to the threshold.
|
|
*>
|
|
*> line 5: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 6: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 6 was 2:
|
|
*>
|
|
*> line 7: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> If line 2 was 0:
|
|
*>
|
|
*> line 7-EOF: Precomputed examples are tested.
|
|
*>
|
|
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
|
|
*> its dimension. The first line contains the dimension (a
|
|
*> single integer). The next N*N lines contain the matrix A, one
|
|
*> element per line. The next N*N lines contain the matrix B.
|
|
*> The next line contains the reciprocals of the eigenvalue
|
|
*> condition numbers. The last line contains the reciprocals of
|
|
*> the eigenvector condition numbers. The end of data is
|
|
*> indicated by dimension N=0. Even if no data is to be tested,
|
|
*> there must be at least one line containing N=0.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZHB input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of N.
|
|
*>
|
|
*> line 3: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix dimension N.
|
|
*>
|
|
*> line 4: NK, INTEGER
|
|
*> Number of values of K.
|
|
*>
|
|
*> line 5: KVAL, INTEGER array, dimension (NK)
|
|
*> The values for the matrix dimension K.
|
|
*>
|
|
*> line 6: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 7 was 2:
|
|
*>
|
|
*> line 8: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 8-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'ZHB'.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZBB input file:
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix row dimension M.
|
|
*>
|
|
*> line 4: NVAL, INTEGER array, dimension (NN)
|
|
*> The values for the matrix column dimension N.
|
|
*>
|
|
*> line 4: NK, INTEGER
|
|
*> Number of values of K.
|
|
*>
|
|
*> line 5: KVAL, INTEGER array, dimension (NK)
|
|
*> The values for the matrix bandwidth K.
|
|
*>
|
|
*> line 6: NPARMS, INTEGER
|
|
*> Number of values of the parameter NRHS
|
|
*>
|
|
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
|
|
*> The values for the number of right hand sides NRHS.
|
|
*>
|
|
*> line 8: THRESH
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 9: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 9 was 2:
|
|
*>
|
|
*> line 10: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 10-EOF: Lines specifying matrix types, as for SVD.
|
|
*> The 3-character path name is 'ZBB'.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZEC input file:
|
|
*>
|
|
*> line 2: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> lines 3-EOF:
|
|
*>
|
|
*> Input for testing the eigencondition routines consists of a set of
|
|
*> specially constructed test cases and their solutions. The data
|
|
*> format is not intended to be modified by the user.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZBL and ZBK input files:
|
|
*>
|
|
*> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in
|
|
*> columns 1-3 to test CGEBAK.
|
|
*>
|
|
*> The remaining lines consist of specially constructed test cases.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> ZGL and ZGK input files:
|
|
*>
|
|
*> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in
|
|
*> columns 1-3 to test ZGGBAK.
|
|
*>
|
|
*> The remaining lines consist of specially constructed test cases.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> GLM data file:
|
|
*>
|
|
*> line 1: 'GLM' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M, P, and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension(NN)
|
|
*> Values of M (row dimension).
|
|
*>
|
|
*> line 4: PVAL, INTEGER array, dimension(NN)
|
|
*> Values of P (row dimension).
|
|
*>
|
|
*> line 5: NVAL, INTEGER array, dimension(NN)
|
|
*> Values of N (column dimension), note M <= N <= M+P.
|
|
*>
|
|
*> line 6: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 8: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 8 was 2:
|
|
*>
|
|
*> line 9: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'GLM' for the generalized
|
|
*> linear regression model routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> GQR data file:
|
|
*>
|
|
*> line 1: 'GQR' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M, P, and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension(NN)
|
|
*> Values of M.
|
|
*>
|
|
*> line 4: PVAL, INTEGER array, dimension(NN)
|
|
*> Values of P.
|
|
*>
|
|
*> line 5: NVAL, INTEGER array, dimension(NN)
|
|
*> Values of N.
|
|
*>
|
|
*> line 6: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 8: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 8 was 2:
|
|
*>
|
|
*> line 9: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'GQR' for the generalized
|
|
*> QR and RQ routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> GSV data file:
|
|
*>
|
|
*> line 1: 'GSV' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M, P, and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension(NN)
|
|
*> Values of M (row dimension).
|
|
*>
|
|
*> line 4: PVAL, INTEGER array, dimension(NN)
|
|
*> Values of P (row dimension).
|
|
*>
|
|
*> line 5: NVAL, INTEGER array, dimension(NN)
|
|
*> Values of N (column dimension).
|
|
*>
|
|
*> line 6: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 8: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 8 was 2:
|
|
*>
|
|
*> line 9: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'GSV' for the generalized
|
|
*> SVD routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> CSD data file:
|
|
*>
|
|
*> line 1: 'CSD' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NM, INTEGER
|
|
*> Number of values of M, P, and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension(NM)
|
|
*> Values of M (row and column dimension of orthogonal matrix).
|
|
*>
|
|
*> line 4: PVAL, INTEGER array, dimension(NM)
|
|
*> Values of P (row dimension of top-left block).
|
|
*>
|
|
*> line 5: NVAL, INTEGER array, dimension(NM)
|
|
*> Values of N (column dimension of top-left block).
|
|
*>
|
|
*> line 6: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 8: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 8 was 2:
|
|
*>
|
|
*> line 9: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'CSD' for the CSD routine.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> LSE data file:
|
|
*>
|
|
*> line 1: 'LSE' in columns 1 to 3.
|
|
*>
|
|
*> line 2: NN, INTEGER
|
|
*> Number of values of M, P, and N.
|
|
*>
|
|
*> line 3: MVAL, INTEGER array, dimension(NN)
|
|
*> Values of M.
|
|
*>
|
|
*> line 4: PVAL, INTEGER array, dimension(NN)
|
|
*> Values of P.
|
|
*>
|
|
*> line 5: NVAL, INTEGER array, dimension(NN)
|
|
*> Values of N, note P <= N <= P+M.
|
|
*>
|
|
*> line 6: THRESH, REAL
|
|
*> Threshold value for the test ratios. Information will be
|
|
*> printed about each test for which the test ratio is greater
|
|
*> than or equal to the threshold.
|
|
*>
|
|
*> line 7: TSTERR, LOGICAL
|
|
*> Flag indicating whether or not to test the error exits for
|
|
*> the LAPACK routines and driver routines.
|
|
*>
|
|
*> line 8: NEWSD, INTEGER
|
|
*> A code indicating how to set the random number seed.
|
|
*> = 0: Set the seed to a default value before each run
|
|
*> = 1: Initialize the seed to a default value only before the
|
|
*> first run
|
|
*> = 2: Like 1, but use the seed values on the next line
|
|
*>
|
|
*> If line 8 was 2:
|
|
*>
|
|
*> line 9: INTEGER array, dimension (4)
|
|
*> Four integer values for the random number seed.
|
|
*>
|
|
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
|
|
*> The 3-character path name is 'GSV' for the generalized
|
|
*> SVD routines.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> NMAX is currently set to 132 and must be at least 12 for some of the
|
|
*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter
|
|
*> statements below. For SVD, we assume NRHS may be as big as N. The
|
|
*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
PROGRAM ZCHKEE
|
|
*
|
|
#if defined(_OPENMP)
|
|
use omp_lib
|
|
#endif
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER NMAX
|
|
PARAMETER ( NMAX = 132 )
|
|
INTEGER NCMAX
|
|
PARAMETER ( NCMAX = 20 )
|
|
INTEGER NEED
|
|
PARAMETER ( NEED = 14 )
|
|
INTEGER LWORK
|
|
PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) )
|
|
INTEGER LIWORK
|
|
PARAMETER ( LIWORK = NMAX*( NMAX+20 ) )
|
|
INTEGER MAXIN
|
|
PARAMETER ( MAXIN = 20 )
|
|
INTEGER MAXT
|
|
PARAMETER ( MAXT = 30 )
|
|
INTEGER NIN, NOUT
|
|
PARAMETER ( NIN = 5, NOUT = 6 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX,
|
|
$ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE,
|
|
$ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR,
|
|
$ ZBB, ZGG, ZHB
|
|
CHARACTER C1
|
|
CHARACTER*3 C3, PATH
|
|
CHARACTER*32 VNAME
|
|
CHARACTER*10 INTSTR
|
|
CHARACTER*80 LINE
|
|
INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
|
|
$ NK, NN, NPARMS, NRHS, NTYPES,
|
|
$ VERS_MAJOR, VERS_MINOR, VERS_PATCH
|
|
INTEGER*4 N_THREADS, ONE_THREAD
|
|
DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
|
|
INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
|
|
$ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
|
|
$ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
|
|
$ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
|
|
$ PVAL( MAXIN )
|
|
INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
|
|
$ ISHFTS( MAXIN ), IACC22( MAXIN )
|
|
DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ),
|
|
$ RESULT( 500 )
|
|
COMPLEX*16 DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ),
|
|
$ X( 5*NMAX )
|
|
* ..
|
|
* .. Allocatable Arrays ..
|
|
INTEGER AllocateStatus
|
|
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RWORK, S
|
|
COMPLEX*16, DIMENSION(:), ALLOCATABLE :: WORK
|
|
COMPLEX*16, DIMENSION(:,:), ALLOCATABLE :: A, B, C
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAMEN
|
|
DOUBLE PRECISION DLAMCH, DSECND
|
|
EXTERNAL LSAMEN, DLAMCH, DSECND
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL,
|
|
$ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS,
|
|
$ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE,
|
|
$ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES,
|
|
$ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX,
|
|
$ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER,
|
|
$ ZDRGES3, ZDRGEV3,
|
|
$ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC LEN, MIN
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
|
|
$ SELOPT
|
|
* ..
|
|
* .. Arrays in Common ..
|
|
LOGICAL SELVAL( 20 )
|
|
INTEGER IPARMS( 100 )
|
|
DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / CENVIR / NPROC, NSHIFT, MAXB
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
|
|
COMMON / CLAENV / IPARMS
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA INTSTR / '0123456789' /
|
|
DATA IOLDSD / 0, 0, 0, 1 /
|
|
* ..
|
|
* .. Allocate memory dynamically ..
|
|
*
|
|
ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
ALLOCATE ( WORK(LWORK), STAT = AllocateStatus )
|
|
IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
A = 0.0
|
|
B = 0.0
|
|
C = 0.0
|
|
DC = 0.0
|
|
S1 = DSECND( )
|
|
FATAL = .FALSE.
|
|
NUNIT = NOUT
|
|
*
|
|
* Return to here to read multiple sets of data
|
|
*
|
|
10 CONTINUE
|
|
*
|
|
* Read the first line and set the 3-character test path
|
|
*
|
|
READ( NIN, FMT = '(A80)', END = 380 )LINE
|
|
PATH = LINE( 1: 3 )
|
|
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' )
|
|
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR.
|
|
$ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
|
|
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' )
|
|
ZEV = LSAMEN( 3, PATH, 'ZEV' )
|
|
ZES = LSAMEN( 3, PATH, 'ZES' )
|
|
ZVX = LSAMEN( 3, PATH, 'ZVX' )
|
|
ZSX = LSAMEN( 3, PATH, 'ZSX' )
|
|
ZGG = LSAMEN( 3, PATH, 'ZGG' )
|
|
ZGS = LSAMEN( 3, PATH, 'ZGS' )
|
|
ZGX = LSAMEN( 3, PATH, 'ZGX' )
|
|
ZGV = LSAMEN( 3, PATH, 'ZGV' )
|
|
ZXV = LSAMEN( 3, PATH, 'ZXV' )
|
|
ZHB = LSAMEN( 3, PATH, 'ZHB' )
|
|
ZBB = LSAMEN( 3, PATH, 'ZBB' )
|
|
GLM = LSAMEN( 3, PATH, 'GLM' )
|
|
GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
|
|
GSV = LSAMEN( 3, PATH, 'GSV' )
|
|
CSD = LSAMEN( 3, PATH, 'CSD' )
|
|
LSE = LSAMEN( 3, PATH, 'LSE' )
|
|
ZBL = LSAMEN( 3, PATH, 'ZBL' )
|
|
ZBK = LSAMEN( 3, PATH, 'ZBK' )
|
|
ZGL = LSAMEN( 3, PATH, 'ZGL' )
|
|
ZGK = LSAMEN( 3, PATH, 'ZGK' )
|
|
*
|
|
* Report values of parameters.
|
|
*
|
|
IF( PATH.EQ.' ' ) THEN
|
|
GO TO 10
|
|
ELSE IF( NEP ) THEN
|
|
WRITE( NOUT, FMT = 9987 )
|
|
ELSE IF( SEP ) THEN
|
|
WRITE( NOUT, FMT = 9986 )
|
|
ELSE IF( SVD ) THEN
|
|
WRITE( NOUT, FMT = 9985 )
|
|
ELSE IF( ZEV ) THEN
|
|
WRITE( NOUT, FMT = 9979 )
|
|
ELSE IF( ZES ) THEN
|
|
WRITE( NOUT, FMT = 9978 )
|
|
ELSE IF( ZVX ) THEN
|
|
WRITE( NOUT, FMT = 9977 )
|
|
ELSE IF( ZSX ) THEN
|
|
WRITE( NOUT, FMT = 9976 )
|
|
ELSE IF( ZGG ) THEN
|
|
WRITE( NOUT, FMT = 9975 )
|
|
ELSE IF( ZGS ) THEN
|
|
WRITE( NOUT, FMT = 9964 )
|
|
ELSE IF( ZGX ) THEN
|
|
WRITE( NOUT, FMT = 9965 )
|
|
ELSE IF( ZGV ) THEN
|
|
WRITE( NOUT, FMT = 9963 )
|
|
ELSE IF( ZXV ) THEN
|
|
WRITE( NOUT, FMT = 9962 )
|
|
ELSE IF( ZHB ) THEN
|
|
WRITE( NOUT, FMT = 9974 )
|
|
ELSE IF( ZBB ) THEN
|
|
WRITE( NOUT, FMT = 9967 )
|
|
ELSE IF( GLM ) THEN
|
|
WRITE( NOUT, FMT = 9971 )
|
|
ELSE IF( GQR ) THEN
|
|
WRITE( NOUT, FMT = 9970 )
|
|
ELSE IF( GSV ) THEN
|
|
WRITE( NOUT, FMT = 9969 )
|
|
ELSE IF( CSD ) THEN
|
|
WRITE( NOUT, FMT = 9960 )
|
|
ELSE IF( LSE ) THEN
|
|
WRITE( NOUT, FMT = 9968 )
|
|
ELSE IF( ZBL ) THEN
|
|
*
|
|
* ZGEBAL: Balancing
|
|
*
|
|
CALL ZCHKBL( NIN, NOUT )
|
|
GO TO 380
|
|
ELSE IF( ZBK ) THEN
|
|
*
|
|
* ZGEBAK: Back transformation
|
|
*
|
|
CALL ZCHKBK( NIN, NOUT )
|
|
GO TO 380
|
|
ELSE IF( ZGL ) THEN
|
|
*
|
|
* ZGGBAL: Balancing
|
|
*
|
|
CALL ZCHKGL( NIN, NOUT )
|
|
GO TO 380
|
|
ELSE IF( ZGK ) THEN
|
|
*
|
|
* ZGGBAK: Back transformation
|
|
*
|
|
CALL ZCHKGK( NIN, NOUT )
|
|
GO TO 380
|
|
ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN
|
|
*
|
|
* ZEC: Eigencondition estimation
|
|
*
|
|
READ( NIN, FMT = * )THRESH
|
|
CALL XLAENV( 1, 1 )
|
|
CALL XLAENV( 12, 1 )
|
|
TSTERR = .TRUE.
|
|
CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT )
|
|
GO TO 380
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9992 )PATH
|
|
GO TO 380
|
|
END IF
|
|
CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
|
|
WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
|
|
WRITE( NOUT, FMT = 9984 )
|
|
*
|
|
* Read the number of values of M, P, and N.
|
|
*
|
|
READ( NIN, FMT = * )NN
|
|
IF( NN.LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
|
|
NN = 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NN.GT.MAXIN ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
|
|
NN = 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
*
|
|
* Read the values of M
|
|
*
|
|
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
|
|
READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
|
|
IF( SVD ) THEN
|
|
VNAME = ' M '
|
|
ELSE
|
|
VNAME = ' N '
|
|
END IF
|
|
DO 20 I = 1, NN
|
|
IF( MVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( MVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
20 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
|
|
END IF
|
|
*
|
|
* Read the values of P
|
|
*
|
|
IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
|
|
READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
|
|
DO 30 I = 1, NN
|
|
IF( PVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( PVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
30 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
|
|
END IF
|
|
*
|
|
* Read the values of N
|
|
*
|
|
IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
|
|
$ LSE ) THEN
|
|
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
|
|
DO 40 I = 1, NN
|
|
IF( NVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
40 CONTINUE
|
|
ELSE
|
|
DO 50 I = 1, NN
|
|
NVAL( I ) = MVAL( I )
|
|
50 CONTINUE
|
|
END IF
|
|
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
|
|
WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9983 )'N: ', NN
|
|
END IF
|
|
*
|
|
* Read the number of values of K, followed by the values of K
|
|
*
|
|
IF( ZHB .OR. ZBB ) THEN
|
|
READ( NIN, FMT = * )NK
|
|
READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
|
|
DO 60 I = 1, NK
|
|
IF( KVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( KVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
60 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
|
|
END IF
|
|
*
|
|
IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN
|
|
*
|
|
* For the nonsymmetric QR driver routines, only one set of
|
|
* parameters is allowed.
|
|
*
|
|
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
|
|
$ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
|
|
IF( NBVAL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( INMIN( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( INWIN( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( INIBL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( IACC22( 1 ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
CALL XLAENV( 1, NBVAL( 1 ) )
|
|
CALL XLAENV( 2, NBMIN( 1 ) )
|
|
CALL XLAENV( 3, NXVAL( 1 ) )
|
|
CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
|
|
CALL XLAENV(13, INWIN( 1 ) )
|
|
CALL XLAENV(14, INIBL( 1 ) )
|
|
CALL XLAENV(15, ISHFTS( 1 ) )
|
|
CALL XLAENV(16, IACC22( 1 ) )
|
|
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
|
|
*
|
|
ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN
|
|
*
|
|
* For the nonsymmetric generalized driver routines, only one set of
|
|
* parameters is allowed.
|
|
*
|
|
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
|
|
$ NSVAL( 1 ), MXBVAL( 1 )
|
|
IF( NBVAL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
ELSE IF( NSVAL( 1 ).LT.2 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
|
|
FATAL = .TRUE.
|
|
ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
|
|
FATAL = .TRUE.
|
|
END IF
|
|
CALL XLAENV( 1, NBVAL( 1 ) )
|
|
CALL XLAENV( 2, NBMIN( 1 ) )
|
|
CALL XLAENV( 3, NXVAL( 1 ) )
|
|
CALL XLAENV( 4, NSVAL( 1 ) )
|
|
CALL XLAENV( 8, MXBVAL( 1 ) )
|
|
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
|
|
WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
|
|
ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
|
|
$ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
|
|
*
|
|
* For the other paths, the number of parameters can be varied
|
|
* from the input file. Read the number of parameter values.
|
|
*
|
|
READ( NIN, FMT = * )NPARMS
|
|
IF( NPARMS.LT.1 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
|
|
NPARMS = 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NPARMS.GT.MAXIN ) THEN
|
|
WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
|
|
NPARMS = 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
*
|
|
* Read the values of NB
|
|
*
|
|
IF( .NOT.ZBB ) THEN
|
|
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
|
|
DO 70 I = 1, NPARMS
|
|
IF( NBVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NBVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
70 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'NB: ',
|
|
$ ( NBVAL( I ), I = 1, NPARMS )
|
|
END IF
|
|
*
|
|
* Read the values of NBMIN
|
|
*
|
|
IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN
|
|
READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
|
|
DO 80 I = 1, NPARMS
|
|
IF( NBMIN( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NBMIN( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
80 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'NBMIN:',
|
|
$ ( NBMIN( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 90 I = 1, NPARMS
|
|
NBMIN( I ) = 1
|
|
90 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values of NX
|
|
*
|
|
IF( NEP .OR. SEP .OR. SVD ) THEN
|
|
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
|
|
DO 100 I = 1, NPARMS
|
|
IF( NXVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NXVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
100 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'NX: ',
|
|
$ ( NXVAL( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 110 I = 1, NPARMS
|
|
NXVAL( I ) = 1
|
|
110 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values of NSHIFT (if ZGG) or NRHS (if SVD
|
|
* or ZBB).
|
|
*
|
|
IF( SVD .OR. ZBB .OR. ZGG ) THEN
|
|
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
|
|
DO 120 I = 1, NPARMS
|
|
IF( NSVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NSVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
120 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'NS: ',
|
|
$ ( NSVAL( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 130 I = 1, NPARMS
|
|
NSVAL( I ) = 1
|
|
130 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for MAXB.
|
|
*
|
|
IF( ZGG ) THEN
|
|
READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
|
|
DO 140 I = 1, NPARMS
|
|
IF( MXBVAL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
140 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'MAXB: ',
|
|
$ ( MXBVAL( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 150 I = 1, NPARMS
|
|
MXBVAL( I ) = 1
|
|
150 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for INMIN.
|
|
*
|
|
IF( NEP ) THEN
|
|
READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
|
|
DO 540 I = 1, NPARMS
|
|
IF( INMIN( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
540 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'INMIN: ',
|
|
$ ( INMIN( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 550 I = 1, NPARMS
|
|
INMIN( I ) = 1
|
|
550 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for INWIN.
|
|
*
|
|
IF( NEP ) THEN
|
|
READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
|
|
DO 560 I = 1, NPARMS
|
|
IF( INWIN( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
560 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'INWIN: ',
|
|
$ ( INWIN( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 570 I = 1, NPARMS
|
|
INWIN( I ) = 1
|
|
570 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for INIBL.
|
|
*
|
|
IF( NEP ) THEN
|
|
READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
|
|
DO 580 I = 1, NPARMS
|
|
IF( INIBL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
580 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'INIBL: ',
|
|
$ ( INIBL( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 590 I = 1, NPARMS
|
|
INIBL( I ) = 1
|
|
590 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for ISHFTS.
|
|
*
|
|
IF( NEP ) THEN
|
|
READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
|
|
DO 600 I = 1, NPARMS
|
|
IF( ISHFTS( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
600 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
|
|
$ ( ISHFTS( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 610 I = 1, NPARMS
|
|
ISHFTS( I ) = 1
|
|
610 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for IACC22.
|
|
*
|
|
IF( NEP .OR. ZGG ) THEN
|
|
READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
|
|
DO 620 I = 1, NPARMS
|
|
IF( IACC22( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
|
|
FATAL = .TRUE.
|
|
END IF
|
|
620 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'IACC22: ',
|
|
$ ( IACC22( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 630 I = 1, NPARMS
|
|
IACC22( I ) = 1
|
|
630 CONTINUE
|
|
END IF
|
|
*
|
|
* Read the values for NBCOL.
|
|
*
|
|
IF( ZGG ) THEN
|
|
READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
|
|
DO 160 I = 1, NPARMS
|
|
IF( NBCOL( I ).LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
|
|
FATAL = .TRUE.
|
|
ELSE IF( NBCOL( I ).GT.NMAX ) THEN
|
|
WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
|
|
FATAL = .TRUE.
|
|
END IF
|
|
160 CONTINUE
|
|
WRITE( NOUT, FMT = 9983 )'NBCOL:',
|
|
$ ( NBCOL( I ), I = 1, NPARMS )
|
|
ELSE
|
|
DO 170 I = 1, NPARMS
|
|
NBCOL( I ) = 1
|
|
170 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Calculate and print the machine dependent constants.
|
|
*
|
|
WRITE( NOUT, FMT = * )
|
|
EPS = DLAMCH( 'Underflow threshold' )
|
|
WRITE( NOUT, FMT = 9981 )'underflow', EPS
|
|
EPS = DLAMCH( 'Overflow threshold' )
|
|
WRITE( NOUT, FMT = 9981 )'overflow ', EPS
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
WRITE( NOUT, FMT = 9981 )'precision', EPS
|
|
*
|
|
* Read the threshold value for the test ratios.
|
|
*
|
|
READ( NIN, FMT = * )THRESH
|
|
WRITE( NOUT, FMT = 9982 )THRESH
|
|
IF( SEP .OR. SVD .OR. ZGG ) THEN
|
|
*
|
|
* Read the flag that indicates whether to test LAPACK routines.
|
|
*
|
|
READ( NIN, FMT = * )TSTCHK
|
|
*
|
|
* Read the flag that indicates whether to test driver routines.
|
|
*
|
|
READ( NIN, FMT = * )TSTDRV
|
|
END IF
|
|
*
|
|
* Read the flag that indicates whether to test the error exits.
|
|
*
|
|
READ( NIN, FMT = * )TSTERR
|
|
*
|
|
* Read the code describing how to set the random number seed.
|
|
*
|
|
READ( NIN, FMT = * )NEWSD
|
|
*
|
|
* If NEWSD = 2, read another line with 4 integers for the seed.
|
|
*
|
|
IF( NEWSD.EQ.2 )
|
|
$ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
|
|
*
|
|
DO 180 I = 1, 4
|
|
ISEED( I ) = IOLDSD( I )
|
|
180 CONTINUE
|
|
*
|
|
IF( FATAL ) THEN
|
|
WRITE( NOUT, FMT = 9999 )
|
|
STOP
|
|
END IF
|
|
*
|
|
* Read the input lines indicating the test path and its parameters.
|
|
* The first three characters indicate the test path, and the number
|
|
* of test matrix types must be the first nonblank item in columns
|
|
* 4-80.
|
|
*
|
|
190 CONTINUE
|
|
*
|
|
IF( .NOT.( ZGX .OR. ZXV ) ) THEN
|
|
*
|
|
200 CONTINUE
|
|
READ( NIN, FMT = '(A80)', END = 380 )LINE
|
|
C3 = LINE( 1: 3 )
|
|
LENP = LEN( LINE )
|
|
I = 3
|
|
ITMP = 0
|
|
I1 = 0
|
|
210 CONTINUE
|
|
I = I + 1
|
|
IF( I.GT.LENP ) THEN
|
|
IF( I1.GT.0 ) THEN
|
|
GO TO 240
|
|
ELSE
|
|
NTYPES = MAXT
|
|
GO TO 240
|
|
END IF
|
|
END IF
|
|
IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
|
|
I1 = I
|
|
C1 = LINE( I1: I1 )
|
|
*
|
|
* Check that a valid integer was read
|
|
*
|
|
DO 220 K = 1, 10
|
|
IF( C1.EQ.INTSTR( K: K ) ) THEN
|
|
IC = K - 1
|
|
GO TO 230
|
|
END IF
|
|
220 CONTINUE
|
|
WRITE( NOUT, FMT = 9991 )I, LINE
|
|
GO TO 200
|
|
230 CONTINUE
|
|
ITMP = 10*ITMP + IC
|
|
GO TO 210
|
|
ELSE IF( I1.GT.0 ) THEN
|
|
GO TO 240
|
|
ELSE
|
|
GO TO 210
|
|
END IF
|
|
240 CONTINUE
|
|
NTYPES = ITMP
|
|
*
|
|
* Skip the tests if NTYPES is <= 0.
|
|
*
|
|
IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR.
|
|
$ ZGS ) .AND. NTYPES.LE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
GO TO 200
|
|
END IF
|
|
*
|
|
ELSE
|
|
IF( ZGX )
|
|
$ C3 = 'ZGX'
|
|
IF( ZXV )
|
|
$ C3 = 'ZXV'
|
|
END IF
|
|
*
|
|
* Reset the random number seed.
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 250 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
250 CONTINUE
|
|
END IF
|
|
*
|
|
IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
|
|
*
|
|
* -------------------------------------
|
|
* NEP: Nonsymmetric Eigenvalue Problem
|
|
* -------------------------------------
|
|
* Vary the parameters
|
|
* NB = block size
|
|
* NBMIN = minimum block size
|
|
* NX = crossover point
|
|
* NS = number of shifts
|
|
* MAXB = minimum submatrix size
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV( 1, 1 )
|
|
IF( TSTERR )
|
|
$ CALL ZERRHS( 'ZHSEQR', NOUT )
|
|
DO 270 I = 1, NPARMS
|
|
CALL XLAENV( 1, NBVAL( I ) )
|
|
CALL XLAENV( 2, NBMIN( I ) )
|
|
CALL XLAENV( 3, NXVAL( I ) )
|
|
CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
|
|
CALL XLAENV(13, INWIN( I ) )
|
|
CALL XLAENV(14, INIBL( I ) )
|
|
CALL XLAENV(15, ISHFTS( I ) )
|
|
CALL XLAENV(16, IACC22( I ) )
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 260 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
260 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
|
|
$ NXVAL( I ), MAX( 11, INMIN(I)),
|
|
$ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
|
|
CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
|
|
$ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ),
|
|
$ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
|
|
$ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK,
|
|
$ RESULT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO
|
|
270 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' )
|
|
$ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
|
|
*
|
|
* ----------------------------------
|
|
* SEP: Symmetric Eigenvalue Problem
|
|
* ----------------------------------
|
|
* Vary the parameters
|
|
* NB = block size
|
|
* NBMIN = minimum block size
|
|
* NX = crossover point
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV( 1, 1 )
|
|
CALL XLAENV( 9, 25 )
|
|
IF( TSTERR ) THEN
|
|
#if defined(_OPENMP)
|
|
N_THREADS = OMP_GET_MAX_THREADS()
|
|
ONE_THREAD = 1
|
|
CALL OMP_SET_NUM_THREADS(ONE_THREAD)
|
|
#endif
|
|
CALL ZERRST( 'ZST', NOUT )
|
|
#if defined(_OPENMP)
|
|
CALL OMP_SET_NUM_THREADS(N_THREADS)
|
|
#endif
|
|
END IF
|
|
DO 290 I = 1, NPARMS
|
|
CALL XLAENV( 1, NBVAL( I ) )
|
|
CALL XLAENV( 2, NBMIN( I ) )
|
|
CALL XLAENV( 3, NXVAL( I ) )
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 280 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
280 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
|
|
$ NXVAL( I )
|
|
IF( TSTCHK ) THEN
|
|
IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
|
|
CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
|
|
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
|
|
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
|
|
$ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
|
|
$ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
|
|
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
|
|
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
|
|
$ RESULT, INFO )
|
|
ELSE
|
|
CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
|
|
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
|
|
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
|
|
$ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
|
|
$ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
|
|
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
|
|
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
|
|
$ RESULT, INFO )
|
|
ENDIF
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO
|
|
END IF
|
|
IF( TSTDRV ) THEN
|
|
IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
|
|
CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
|
|
$ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
|
|
$ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
|
|
$ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
|
|
$ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
|
|
$ LWORK, IWORK, LIWORK, RESULT, INFO )
|
|
ELSE
|
|
CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
|
|
$ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
|
|
$ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
|
|
$ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
|
|
$ LWORK, IWORK, LIWORK, RESULT, INFO )
|
|
ENDIF
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO
|
|
END IF
|
|
290 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN
|
|
*
|
|
* ----------------------------------------------
|
|
* ZSG: Hermitian Generalized Eigenvalue Problem
|
|
* ----------------------------------------------
|
|
* Vary the parameters
|
|
* NB = block size
|
|
* NBMIN = minimum block size
|
|
* NX = crossover point
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV( 9, 25 )
|
|
DO 310 I = 1, NPARMS
|
|
CALL XLAENV( 1, NBVAL( I ) )
|
|
CALL XLAENV( 2, NBMIN( I ) )
|
|
CALL XLAENV( 3, NXVAL( I ) )
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 300 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
300 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
|
|
$ NXVAL( I )
|
|
IF( TSTCHK ) THEN
|
|
* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
|
|
* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
|
|
* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
|
|
* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
|
|
* $ INFO )
|
|
CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
|
|
$ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX,
|
|
$ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
|
|
$ A( 1, 7 ), WORK, LWORK, RWORK, LWORK,
|
|
$ IWORK, LIWORK, RESULT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO
|
|
END IF
|
|
310 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
|
|
*
|
|
* ----------------------------------
|
|
* SVD: Singular Value Decomposition
|
|
* ----------------------------------
|
|
* Vary the parameters
|
|
* NB = block size
|
|
* NBMIN = minimum block size
|
|
* NX = crossover point
|
|
* NRHS = number of right hand sides
|
|
*
|
|
MAXTYP = 16
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV( 9, 25 )
|
|
*
|
|
* Test the error exits
|
|
*
|
|
CALL XLAENV( 1, 1 )
|
|
IF( TSTERR .AND. TSTCHK )
|
|
$ CALL ZERRBD( 'ZBD', NOUT )
|
|
IF( TSTERR .AND. TSTDRV )
|
|
$ CALL ZERRED( 'ZBD', NOUT )
|
|
*
|
|
DO 330 I = 1, NPARMS
|
|
NRHS = NSVAL( I )
|
|
CALL XLAENV( 1, NBVAL( I ) )
|
|
CALL XLAENV( 2, NBMIN( I ) )
|
|
CALL XLAENV( 3, NXVAL( I ) )
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 320 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
320 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
|
|
$ NXVAL( I ), NRHS
|
|
IF( TSTCHK ) THEN
|
|
CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
|
|
$ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ),
|
|
$ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ),
|
|
$ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ),
|
|
$ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ),
|
|
$ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO
|
|
END IF
|
|
IF( TSTDRV )
|
|
$ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
|
|
$ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
|
|
$ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
|
|
$ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ),
|
|
$ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT,
|
|
$ INFO )
|
|
330 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN
|
|
*
|
|
* --------------------------------------------
|
|
* ZEV: Nonsymmetric Eigenvalue Problem Driver
|
|
* ZGEEV (eigenvalues and eigenvectors)
|
|
* --------------------------------------------
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRED( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
|
|
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
|
|
$ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK,
|
|
$ IWORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN
|
|
*
|
|
* --------------------------------------------
|
|
* ZES: Nonsymmetric Eigenvalue Problem Driver
|
|
* ZGEES (Schur form)
|
|
* --------------------------------------------
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRED( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX,
|
|
$ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN
|
|
*
|
|
* --------------------------------------------------------------
|
|
* ZVX: Nonsymmetric Eigenvalue Problem Expert Driver
|
|
* ZGEEVX (eigenvalues, eigenvectors and condition numbers)
|
|
* --------------------------------------------------------------
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRED( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
|
|
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
|
|
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
|
|
$ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
|
|
$ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
|
|
$ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK,
|
|
$ RWORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN
|
|
*
|
|
* ---------------------------------------------------
|
|
* ZSX: Nonsymmetric Eigenvalue Problem Expert Driver
|
|
* ZGEESX (Schur form and condition numbers)
|
|
* ---------------------------------------------------
|
|
*
|
|
MAXTYP = 21
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRED( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
|
|
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ),
|
|
$ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK,
|
|
$ LOGWRK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN
|
|
*
|
|
* -------------------------------------------------
|
|
* ZGG: Generalized Nonsymmetric Eigenvalue Problem
|
|
* -------------------------------------------------
|
|
* Vary the parameters
|
|
* NB = block size
|
|
* NBMIN = minimum block size
|
|
* NS = number of shifts
|
|
* MAXB = minimum submatrix size
|
|
* IACC22: structured matrix multiply
|
|
* NBCOL = minimum column dimension for blocks
|
|
*
|
|
MAXTYP = 26
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV(1,1)
|
|
IF( TSTCHK .AND. TSTERR )
|
|
$ CALL ZERRGG( C3, NOUT )
|
|
DO 350 I = 1, NPARMS
|
|
CALL XLAENV( 1, NBVAL( I ) )
|
|
CALL XLAENV( 2, NBMIN( I ) )
|
|
CALL XLAENV( 4, NSVAL( I ) )
|
|
CALL XLAENV( 8, MXBVAL( I ) )
|
|
CALL XLAENV( 16, IACC22( I ) )
|
|
CALL XLAENV( 5, NBCOL( I ) )
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 340 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
340 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
|
|
$ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
|
|
TSTDIF = .FALSE.
|
|
THRSHN = 10.D0
|
|
IF( TSTCHK ) THEN
|
|
CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
$ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
|
|
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
|
|
$ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
|
|
$ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
|
|
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ),
|
|
$ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK,
|
|
$ LWORK, RWORK, LOGWRK, RESULT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO
|
|
END IF
|
|
350 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN
|
|
*
|
|
* -------------------------------------------------
|
|
* ZGS: Generalized Nonsymmetric Eigenvalue Problem
|
|
* ZGGES (Schur form)
|
|
* -------------------------------------------------
|
|
*
|
|
MAXTYP = 26
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
|
|
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
|
|
$ RESULT, LOGWRK, INFO )
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO
|
|
*
|
|
* Blocked version
|
|
*
|
|
CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
|
|
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
|
|
$ RESULT, LOGWRK, INFO )
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( ZGX ) THEN
|
|
*
|
|
* -------------------------------------------------
|
|
* ZGX Generalized Nonsymmetric Eigenvalue Problem
|
|
* ZGGESX (Schur form and condition numbers)
|
|
* -------------------------------------------------
|
|
*
|
|
MAXTYP = 5
|
|
NTYPES = MAXTYP
|
|
IF( NN.LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL XLAENV( 5, 2 )
|
|
CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
|
|
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
|
|
$ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C,
|
|
$ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK,
|
|
$ LIWORK, LOGWRK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN
|
|
*
|
|
* -------------------------------------------------
|
|
* ZGV: Generalized Nonsymmetric Eigenvalue Problem
|
|
* ZGGEV (Eigenvalue/vector form)
|
|
* -------------------------------------------------
|
|
*
|
|
MAXTYP = 26
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
IF( NTYPES.LE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
|
|
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
|
|
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
|
|
$ RESULT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO
|
|
*
|
|
* Blocked version
|
|
*
|
|
CALL XLAENV(16,2)
|
|
CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
|
|
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
|
|
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
|
|
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
|
|
$ RESULT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( ZXV ) THEN
|
|
*
|
|
* -------------------------------------------------
|
|
* ZXV: Generalized Nonsymmetric Eigenvalue Problem
|
|
* ZGGEVX (eigenvalue/vector with condition numbers)
|
|
* -------------------------------------------------
|
|
*
|
|
MAXTYP = 2
|
|
NTYPES = MAXTYP
|
|
IF( NN.LT.0 ) THEN
|
|
WRITE( NOUT, FMT = 9990 )C3
|
|
ELSE
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( C3, NOUT )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
|
|
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ),
|
|
$ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ),
|
|
$ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
|
|
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK,
|
|
$ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT,
|
|
$ LOGWRK, INFO )
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO
|
|
END IF
|
|
WRITE( NOUT, FMT = 9973 )
|
|
GO TO 10
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN
|
|
*
|
|
* ------------------------------
|
|
* ZHB: Hermitian Band Reduction
|
|
* ------------------------------
|
|
*
|
|
MAXTYP = 15
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
IF( TSTERR ) THEN
|
|
#if defined(_OPENMP)
|
|
N_THREADS = OMP_GET_MAX_THREADS()
|
|
ONE_THREAD = 1
|
|
CALL OMP_SET_NUM_THREADS(ONE_THREAD)
|
|
#endif
|
|
CALL ZERRST( 'ZHB', NOUT )
|
|
#if defined(_OPENMP)
|
|
CALL OMP_SET_NUM_THREADS(N_THREADS)
|
|
#endif
|
|
END IF
|
|
* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
|
|
* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
|
|
* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
|
|
* $ INFO )
|
|
CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
|
|
$ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ),
|
|
$ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ),
|
|
$ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN
|
|
*
|
|
* ------------------------------
|
|
* ZBB: General Band Reduction
|
|
* ------------------------------
|
|
*
|
|
MAXTYP = 15
|
|
NTYPES = MIN( MAXTYP, NTYPES )
|
|
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
|
|
DO 370 I = 1, NPARMS
|
|
NRHS = NSVAL( I )
|
|
*
|
|
IF( NEWSD.EQ.0 ) THEN
|
|
DO 360 K = 1, 4
|
|
ISEED( K ) = IOLDSD( K )
|
|
360 CONTINUE
|
|
END IF
|
|
WRITE( NOUT, FMT = 9966 )C3, NRHS
|
|
CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
|
|
$ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
|
|
$ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ),
|
|
$ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
|
|
$ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO
|
|
370 CONTINUE
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
|
|
*
|
|
* -----------------------------------------
|
|
* GLM: Generalized Linear Regression Model
|
|
* -----------------------------------------
|
|
*
|
|
CALL XLAENV( 1, 1 )
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( 'GLM', NOUT )
|
|
CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX,
|
|
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
|
|
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
|
|
*
|
|
* ------------------------------------------
|
|
* GQR: Generalized QR and RQ factorizations
|
|
* ------------------------------------------
|
|
*
|
|
CALL XLAENV( 1, 1 )
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( 'GQR', NOUT )
|
|
CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
|
|
$ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
|
|
$ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
|
|
$ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN,
|
|
$ NOUT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
|
|
*
|
|
* ----------------------------------------------
|
|
* GSV: Generalized Singular Value Decomposition
|
|
* ----------------------------------------------
|
|
*
|
|
CALL XLAENV(1,1)
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( 'GSV', NOUT )
|
|
CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
|
|
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
|
|
$ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA,
|
|
$ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
|
|
*
|
|
* ----------------------------------------------
|
|
* CSD: CS Decomposition
|
|
* ----------------------------------------------
|
|
*
|
|
CALL XLAENV(1,1)
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( 'CSD', NOUT )
|
|
CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
|
|
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
|
|
$ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK,
|
|
$ DR( 1, 1 ), NIN, NOUT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO
|
|
*
|
|
ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
|
|
*
|
|
* --------------------------------------
|
|
* LSE: Constrained Linear Least Squares
|
|
* --------------------------------------
|
|
*
|
|
CALL XLAENV( 1, 1 )
|
|
IF( TSTERR )
|
|
$ CALL ZERRGG( 'LSE', NOUT )
|
|
CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
|
|
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
|
|
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO
|
|
ELSE
|
|
WRITE( NOUT, FMT = * )
|
|
WRITE( NOUT, FMT = * )
|
|
WRITE( NOUT, FMT = 9992 )C3
|
|
END IF
|
|
IF( .NOT.( ZGX .OR. ZXV ) )
|
|
$ GO TO 190
|
|
380 CONTINUE
|
|
WRITE( NOUT, FMT = 9994 )
|
|
S2 = DSECND( )
|
|
WRITE( NOUT, FMT = 9993 )S2 - S1
|
|
*
|
|
DEALLOCATE (S, STAT = AllocateStatus)
|
|
DEALLOCATE (A, STAT = AllocateStatus)
|
|
DEALLOCATE (B, STAT = AllocateStatus)
|
|
DEALLOCATE (C, STAT = AllocateStatus)
|
|
DEALLOCATE (RWORK, STAT = AllocateStatus)
|
|
DEALLOCATE (WORK, STAT = AllocateStatus)
|
|
*
|
|
9999 FORMAT( / ' Execution not attempted due to input errors' )
|
|
9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
|
|
9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
|
|
$ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
|
|
9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
|
|
$ ', NRHS =', I4 )
|
|
9994 FORMAT( / / ' End of tests' )
|
|
9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
|
|
9992 FORMAT( 1X, A3, ': Unrecognized path name' )
|
|
9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
|
|
$ ' of input', ' line:', / A79 )
|
|
9990 FORMAT( / / 1X, A3, ' routines were not tested' )
|
|
9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
|
|
$ I6 )
|
|
9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
|
|
$ I6 )
|
|
9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
|
|
9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' )
|
|
9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
|
|
9984 FORMAT( / ' The following parameter values will be used:' )
|
|
9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
|
|
9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
|
|
$ 'less than', F8.2, / )
|
|
9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
|
|
9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
|
|
9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
|
|
$ / ' ZGEEV (eigenvalues and eigevectors)' )
|
|
9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
|
|
$ / ' ZGEES (Schur form)' )
|
|
9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
|
|
$ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and',
|
|
$ ' condition numbers)' )
|
|
9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
|
|
$ ' Driver', / ' ZGEESX (Schur form and condition',
|
|
$ ' numbers)' )
|
|
9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
|
|
$ 'Problem routines' )
|
|
9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ',
|
|
$ 'matrix to real tridiagonal form)' )
|
|
9973 FORMAT( / 1X, 71( '-' ) )
|
|
9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
|
|
9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
|
|
$ 'routines' )
|
|
9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
|
|
9969 FORMAT( / ' Tests of the Generalized Singular Value',
|
|
$ ' Decomposition routines' )
|
|
9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
|
|
9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ',
|
|
$ 'matrix to real bidiagonal form)' )
|
|
9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
|
|
9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
|
|
$ 'Problem Expert Driver ZGGESX' )
|
|
9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
|
|
$ 'Problem Driver ZGGES' )
|
|
9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
|
|
$ 'Problem Driver ZGGEV' )
|
|
9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
|
|
$ 'Problem Expert Driver ZGGEVX' )
|
|
9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
|
|
$ ', INMIN=', I4,
|
|
$ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
|
|
$ ', IACC22 =', I4)
|
|
9960 FORMAT( / ' Tests of the CS Decomposition routines' )
|
|
*
|
|
* End of ZCHKEE
|
|
*
|
|
END
|
|
|