You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
336 lines
11 KiB
336 lines
11 KiB
2 years ago
|
*> \brief \b ZLAROT
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT,
|
||
|
* XRIGHT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL LLEFT, LRIGHT, LROWS
|
||
|
* INTEGER LDA, NL
|
||
|
* COMPLEX*16 C, S, XLEFT, XRIGHT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLAROT applies a (Givens) rotation to two adjacent rows or
|
||
|
*> columns, where one element of the first and/or last column/row
|
||
|
*> for use on matrices stored in some format other than GE, so
|
||
|
*> that elements of the matrix may be used or modified for which
|
||
|
*> no array element is provided.
|
||
|
*>
|
||
|
*> One example is a symmetric matrix in SB format (bandwidth=4), for
|
||
|
*> which UPLO='L': Two adjacent rows will have the format:
|
||
|
*>
|
||
|
*> row j: C> C> C> C> C> . . . .
|
||
|
*> row j+1: C> C> C> C> C> . . . .
|
||
|
*>
|
||
|
*> '*' indicates elements for which storage is provided,
|
||
|
*> '.' indicates elements for which no storage is provided, but
|
||
|
*> are not necessarily zero; their values are determined by
|
||
|
*> symmetry. ' ' indicates elements which are necessarily zero,
|
||
|
*> and have no storage provided.
|
||
|
*>
|
||
|
*> Those columns which have two '*'s can be handled by DROT.
|
||
|
*> Those columns which have no '*'s can be ignored, since as long
|
||
|
*> as the Givens rotations are carefully applied to preserve
|
||
|
*> symmetry, their values are determined.
|
||
|
*> Those columns which have one '*' have to be handled separately,
|
||
|
*> by using separate variables "p" and "q":
|
||
|
*>
|
||
|
*> row j: C> C> C> C> C> p . . .
|
||
|
*> row j+1: q C> C> C> C> C> . . . .
|
||
|
*>
|
||
|
*> The element p would have to be set correctly, then that column
|
||
|
*> is rotated, setting p to its new value. The next call to
|
||
|
*> ZLAROT would rotate columns j and j+1, using p, and restore
|
||
|
*> symmetry. The element q would start out being zero, and be
|
||
|
*> made non-zero by the rotation. Later, rotations would presumably
|
||
|
*> be chosen to zero q out.
|
||
|
*>
|
||
|
*> Typical Calling Sequences: rotating the i-th and (i+1)-st rows.
|
||
|
*> ------- ------- ---------
|
||
|
*>
|
||
|
*> General dense matrix:
|
||
|
*>
|
||
|
*> CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S,
|
||
|
*> A(i,1),LDA, DUMMY, DUMMY)
|
||
|
*>
|
||
|
*> General banded matrix in GB format:
|
||
|
*>
|
||
|
*> j = MAX(1, i-KL )
|
||
|
*> NL = MIN( N, i+KU+1 ) + 1-j
|
||
|
*> CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S,
|
||
|
*> A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT )
|
||
|
*>
|
||
|
*> [ note that i+1-j is just MIN(i,KL+1) ]
|
||
|
*>
|
||
|
*> Symmetric banded matrix in SY format, bandwidth K,
|
||
|
*> lower triangle only:
|
||
|
*>
|
||
|
*> j = MAX(1, i-K )
|
||
|
*> NL = MIN( K+1, i ) + 1
|
||
|
*> CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S,
|
||
|
*> A(i,j), LDA, XLEFT, XRIGHT )
|
||
|
*>
|
||
|
*> Same, but upper triangle only:
|
||
|
*>
|
||
|
*> NL = MIN( K+1, N-i ) + 1
|
||
|
*> CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S,
|
||
|
*> A(i,i), LDA, XLEFT, XRIGHT )
|
||
|
*>
|
||
|
*> Symmetric banded matrix in SB format, bandwidth K,
|
||
|
*> lower triangle only:
|
||
|
*>
|
||
|
*> [ same as for SY, except:]
|
||
|
*> . . . .
|
||
|
*> A(i+1-j,j), LDA-1, XLEFT, XRIGHT )
|
||
|
*>
|
||
|
*> [ note that i+1-j is just MIN(i,K+1) ]
|
||
|
*>
|
||
|
*> Same, but upper triangle only:
|
||
|
*> . . .
|
||
|
*> A(K+1,i), LDA-1, XLEFT, XRIGHT )
|
||
|
*>
|
||
|
*> Rotating columns is just the transpose of rotating rows, except
|
||
|
*> for GB and SB: (rotating columns i and i+1)
|
||
|
*>
|
||
|
*> GB:
|
||
|
*> j = MAX(1, i-KU )
|
||
|
*> NL = MIN( N, i+KL+1 ) + 1-j
|
||
|
*> CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S,
|
||
|
*> A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM )
|
||
|
*>
|
||
|
*> [note that KU+j+1-i is just MAX(1,KU+2-i)]
|
||
|
*>
|
||
|
*> SB: (upper triangle)
|
||
|
*>
|
||
|
*> . . . . . .
|
||
|
*> A(K+j+1-i,i),LDA-1, XTOP, XBOTTM )
|
||
|
*>
|
||
|
*> SB: (lower triangle)
|
||
|
*>
|
||
|
*> . . . . . .
|
||
|
*> A(1,i),LDA-1, XTOP, XBOTTM )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \verbatim
|
||
|
*> LROWS - LOGICAL
|
||
|
*> If .TRUE., then ZLAROT will rotate two rows. If .FALSE.,
|
||
|
*> then it will rotate two columns.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> LLEFT - LOGICAL
|
||
|
*> If .TRUE., then XLEFT will be used instead of the
|
||
|
*> corresponding element of A for the first element in the
|
||
|
*> second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.)
|
||
|
*> If .FALSE., then the corresponding element of A will be
|
||
|
*> used.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> LRIGHT - LOGICAL
|
||
|
*> If .TRUE., then XRIGHT will be used instead of the
|
||
|
*> corresponding element of A for the last element in the
|
||
|
*> first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If
|
||
|
*> .FALSE., then the corresponding element of A will be used.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> NL - INTEGER
|
||
|
*> The length of the rows (if LROWS=.TRUE.) or columns (if
|
||
|
*> LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are
|
||
|
*> used, the columns/rows they are in should be included in
|
||
|
*> NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at
|
||
|
*> least 2. The number of rows/columns to be rotated
|
||
|
*> exclusive of those involving XLEFT and/or XRIGHT may
|
||
|
*> not be negative, i.e., NL minus how many of LLEFT and
|
||
|
*> LRIGHT are .TRUE. must be at least zero; if not, XERBLA
|
||
|
*> will be called.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> C, S - COMPLEX*16
|
||
|
*> Specify the Givens rotation to be applied. If LROWS is
|
||
|
*> true, then the matrix ( c s )
|
||
|
*> ( _ _ )
|
||
|
*> (-s c ) is applied from the left;
|
||
|
*> if false, then the transpose (not conjugated) thereof is
|
||
|
*> applied from the right. Note that in contrast to the
|
||
|
*> output of ZROTG or to most versions of ZROT, both C and S
|
||
|
*> are complex. For a Givens rotation, |C|**2 + |S|**2 should
|
||
|
*> be 1, but this is not checked.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> A - COMPLEX*16 array.
|
||
|
*> The array containing the rows/columns to be rotated. The
|
||
|
*> first element of A should be the upper left element to
|
||
|
*> be rotated.
|
||
|
*> Read and modified.
|
||
|
*>
|
||
|
*> LDA - INTEGER
|
||
|
*> The "effective" leading dimension of A. If A contains
|
||
|
*> a matrix stored in GE, HE, or SY format, then this is just
|
||
|
*> the leading dimension of A as dimensioned in the calling
|
||
|
*> routine. If A contains a matrix stored in band (GB, HB, or
|
||
|
*> SB) format, then this should be *one less* than the leading
|
||
|
*> dimension used in the calling routine. Thus, if A were
|
||
|
*> dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the
|
||
|
*> j-th element in the first of the two rows to be rotated,
|
||
|
*> and A(2,j) would be the j-th in the second, regardless of
|
||
|
*> how the array may be stored in the calling routine. [A
|
||
|
*> cannot, however, actually be dimensioned thus, since for
|
||
|
*> band format, the row number may exceed LDA, which is not
|
||
|
*> legal FORTRAN.]
|
||
|
*> If LROWS=.TRUE., then LDA must be at least 1, otherwise
|
||
|
*> it must be at least NL minus the number of .TRUE. values
|
||
|
*> in XLEFT and XRIGHT.
|
||
|
*> Not modified.
|
||
|
*>
|
||
|
*> XLEFT - COMPLEX*16
|
||
|
*> If LLEFT is .TRUE., then XLEFT will be used and modified
|
||
|
*> instead of A(2,1) (if LROWS=.TRUE.) or A(1,2)
|
||
|
*> (if LROWS=.FALSE.).
|
||
|
*> Read and modified.
|
||
|
*>
|
||
|
*> XRIGHT - COMPLEX*16
|
||
|
*> If LRIGHT is .TRUE., then XRIGHT will be used and modified
|
||
|
*> instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1)
|
||
|
*> (if LROWS=.FALSE.).
|
||
|
*> Read and modified.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_matgen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT,
|
||
|
$ XRIGHT )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL LLEFT, LRIGHT, LROWS
|
||
|
INTEGER LDA, NL
|
||
|
COMPLEX*16 C, S, XLEFT, XRIGHT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER IINC, INEXT, IX, IY, IYT, J, NT
|
||
|
COMPLEX*16 TEMPX
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
COMPLEX*16 XT( 2 ), YT( 2 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DCONJG
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Set up indices, arrays for ends
|
||
|
*
|
||
|
IF( LROWS ) THEN
|
||
|
IINC = LDA
|
||
|
INEXT = 1
|
||
|
ELSE
|
||
|
IINC = 1
|
||
|
INEXT = LDA
|
||
|
END IF
|
||
|
*
|
||
|
IF( LLEFT ) THEN
|
||
|
NT = 1
|
||
|
IX = 1 + IINC
|
||
|
IY = 2 + LDA
|
||
|
XT( 1 ) = A( 1 )
|
||
|
YT( 1 ) = XLEFT
|
||
|
ELSE
|
||
|
NT = 0
|
||
|
IX = 1
|
||
|
IY = 1 + INEXT
|
||
|
END IF
|
||
|
*
|
||
|
IF( LRIGHT ) THEN
|
||
|
IYT = 1 + INEXT + ( NL-1 )*IINC
|
||
|
NT = NT + 1
|
||
|
XT( NT ) = XRIGHT
|
||
|
YT( NT ) = A( IYT )
|
||
|
END IF
|
||
|
*
|
||
|
* Check for errors
|
||
|
*
|
||
|
IF( NL.LT.NT ) THEN
|
||
|
CALL XERBLA( 'ZLAROT', 4 )
|
||
|
RETURN
|
||
|
END IF
|
||
|
IF( LDA.LE.0 .OR. ( .NOT.LROWS .AND. LDA.LT.NL-NT ) ) THEN
|
||
|
CALL XERBLA( 'ZLAROT', 8 )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Rotate
|
||
|
*
|
||
|
* ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S
|
||
|
*
|
||
|
DO 10 J = 0, NL - NT - 1
|
||
|
TEMPX = C*A( IX+J*IINC ) + S*A( IY+J*IINC )
|
||
|
A( IY+J*IINC ) = -DCONJG( S )*A( IX+J*IINC ) +
|
||
|
$ DCONJG( C )*A( IY+J*IINC )
|
||
|
A( IX+J*IINC ) = TEMPX
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* ZROT( NT, XT,1, YT,1, C, S ) with complex C, S
|
||
|
*
|
||
|
DO 20 J = 1, NT
|
||
|
TEMPX = C*XT( J ) + S*YT( J )
|
||
|
YT( J ) = -DCONJG( S )*XT( J ) + DCONJG( C )*YT( J )
|
||
|
XT( J ) = TEMPX
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Stuff values back into XLEFT, XRIGHT, etc.
|
||
|
*
|
||
|
IF( LLEFT ) THEN
|
||
|
A( 1 ) = XT( 1 )
|
||
|
XLEFT = YT( 1 )
|
||
|
END IF
|
||
|
*
|
||
|
IF( LRIGHT ) THEN
|
||
|
XRIGHT = XT( NT )
|
||
|
A( IYT ) = YT( NT )
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLAROT
|
||
|
*
|
||
|
END
|