Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

335 lines
11 KiB

*> \brief \b ZLAROT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT,
* XRIGHT )
*
* .. Scalar Arguments ..
* LOGICAL LLEFT, LRIGHT, LROWS
* INTEGER LDA, NL
* COMPLEX*16 C, S, XLEFT, XRIGHT
* ..
* .. Array Arguments ..
* COMPLEX*16 A( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAROT applies a (Givens) rotation to two adjacent rows or
*> columns, where one element of the first and/or last column/row
*> for use on matrices stored in some format other than GE, so
*> that elements of the matrix may be used or modified for which
*> no array element is provided.
*>
*> One example is a symmetric matrix in SB format (bandwidth=4), for
*> which UPLO='L': Two adjacent rows will have the format:
*>
*> row j: C> C> C> C> C> . . . .
*> row j+1: C> C> C> C> C> . . . .
*>
*> '*' indicates elements for which storage is provided,
*> '.' indicates elements for which no storage is provided, but
*> are not necessarily zero; their values are determined by
*> symmetry. ' ' indicates elements which are necessarily zero,
*> and have no storage provided.
*>
*> Those columns which have two '*'s can be handled by DROT.
*> Those columns which have no '*'s can be ignored, since as long
*> as the Givens rotations are carefully applied to preserve
*> symmetry, their values are determined.
*> Those columns which have one '*' have to be handled separately,
*> by using separate variables "p" and "q":
*>
*> row j: C> C> C> C> C> p . . .
*> row j+1: q C> C> C> C> C> . . . .
*>
*> The element p would have to be set correctly, then that column
*> is rotated, setting p to its new value. The next call to
*> ZLAROT would rotate columns j and j+1, using p, and restore
*> symmetry. The element q would start out being zero, and be
*> made non-zero by the rotation. Later, rotations would presumably
*> be chosen to zero q out.
*>
*> Typical Calling Sequences: rotating the i-th and (i+1)-st rows.
*> ------- ------- ---------
*>
*> General dense matrix:
*>
*> CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S,
*> A(i,1),LDA, DUMMY, DUMMY)
*>
*> General banded matrix in GB format:
*>
*> j = MAX(1, i-KL )
*> NL = MIN( N, i+KU+1 ) + 1-j
*> CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S,
*> A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT )
*>
*> [ note that i+1-j is just MIN(i,KL+1) ]
*>
*> Symmetric banded matrix in SY format, bandwidth K,
*> lower triangle only:
*>
*> j = MAX(1, i-K )
*> NL = MIN( K+1, i ) + 1
*> CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S,
*> A(i,j), LDA, XLEFT, XRIGHT )
*>
*> Same, but upper triangle only:
*>
*> NL = MIN( K+1, N-i ) + 1
*> CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S,
*> A(i,i), LDA, XLEFT, XRIGHT )
*>
*> Symmetric banded matrix in SB format, bandwidth K,
*> lower triangle only:
*>
*> [ same as for SY, except:]
*> . . . .
*> A(i+1-j,j), LDA-1, XLEFT, XRIGHT )
*>
*> [ note that i+1-j is just MIN(i,K+1) ]
*>
*> Same, but upper triangle only:
*> . . .
*> A(K+1,i), LDA-1, XLEFT, XRIGHT )
*>
*> Rotating columns is just the transpose of rotating rows, except
*> for GB and SB: (rotating columns i and i+1)
*>
*> GB:
*> j = MAX(1, i-KU )
*> NL = MIN( N, i+KL+1 ) + 1-j
*> CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S,
*> A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM )
*>
*> [note that KU+j+1-i is just MAX(1,KU+2-i)]
*>
*> SB: (upper triangle)
*>
*> . . . . . .
*> A(K+j+1-i,i),LDA-1, XTOP, XBOTTM )
*>
*> SB: (lower triangle)
*>
*> . . . . . .
*> A(1,i),LDA-1, XTOP, XBOTTM )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> LROWS - LOGICAL
*> If .TRUE., then ZLAROT will rotate two rows. If .FALSE.,
*> then it will rotate two columns.
*> Not modified.
*>
*> LLEFT - LOGICAL
*> If .TRUE., then XLEFT will be used instead of the
*> corresponding element of A for the first element in the
*> second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.)
*> If .FALSE., then the corresponding element of A will be
*> used.
*> Not modified.
*>
*> LRIGHT - LOGICAL
*> If .TRUE., then XRIGHT will be used instead of the
*> corresponding element of A for the last element in the
*> first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If
*> .FALSE., then the corresponding element of A will be used.
*> Not modified.
*>
*> NL - INTEGER
*> The length of the rows (if LROWS=.TRUE.) or columns (if
*> LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are
*> used, the columns/rows they are in should be included in
*> NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at
*> least 2. The number of rows/columns to be rotated
*> exclusive of those involving XLEFT and/or XRIGHT may
*> not be negative, i.e., NL minus how many of LLEFT and
*> LRIGHT are .TRUE. must be at least zero; if not, XERBLA
*> will be called.
*> Not modified.
*>
*> C, S - COMPLEX*16
*> Specify the Givens rotation to be applied. If LROWS is
*> true, then the matrix ( c s )
*> ( _ _ )
*> (-s c ) is applied from the left;
*> if false, then the transpose (not conjugated) thereof is
*> applied from the right. Note that in contrast to the
*> output of ZROTG or to most versions of ZROT, both C and S
*> are complex. For a Givens rotation, |C|**2 + |S|**2 should
*> be 1, but this is not checked.
*> Not modified.
*>
*> A - COMPLEX*16 array.
*> The array containing the rows/columns to be rotated. The
*> first element of A should be the upper left element to
*> be rotated.
*> Read and modified.
*>
*> LDA - INTEGER
*> The "effective" leading dimension of A. If A contains
*> a matrix stored in GE, HE, or SY format, then this is just
*> the leading dimension of A as dimensioned in the calling
*> routine. If A contains a matrix stored in band (GB, HB, or
*> SB) format, then this should be *one less* than the leading
*> dimension used in the calling routine. Thus, if A were
*> dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the
*> j-th element in the first of the two rows to be rotated,
*> and A(2,j) would be the j-th in the second, regardless of
*> how the array may be stored in the calling routine. [A
*> cannot, however, actually be dimensioned thus, since for
*> band format, the row number may exceed LDA, which is not
*> legal FORTRAN.]
*> If LROWS=.TRUE., then LDA must be at least 1, otherwise
*> it must be at least NL minus the number of .TRUE. values
*> in XLEFT and XRIGHT.
*> Not modified.
*>
*> XLEFT - COMPLEX*16
*> If LLEFT is .TRUE., then XLEFT will be used and modified
*> instead of A(2,1) (if LROWS=.TRUE.) or A(1,2)
*> (if LROWS=.FALSE.).
*> Read and modified.
*>
*> XRIGHT - COMPLEX*16
*> If LRIGHT is .TRUE., then XRIGHT will be used and modified
*> instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1)
*> (if LROWS=.FALSE.).
*> Read and modified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_matgen
*
* =====================================================================
SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT,
$ XRIGHT )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL LLEFT, LRIGHT, LROWS
INTEGER LDA, NL
COMPLEX*16 C, S, XLEFT, XRIGHT
* ..
* .. Array Arguments ..
COMPLEX*16 A( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER IINC, INEXT, IX, IY, IYT, J, NT
COMPLEX*16 TEMPX
* ..
* .. Local Arrays ..
COMPLEX*16 XT( 2 ), YT( 2 )
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG
* ..
* .. Executable Statements ..
*
* Set up indices, arrays for ends
*
IF( LROWS ) THEN
IINC = LDA
INEXT = 1
ELSE
IINC = 1
INEXT = LDA
END IF
*
IF( LLEFT ) THEN
NT = 1
IX = 1 + IINC
IY = 2 + LDA
XT( 1 ) = A( 1 )
YT( 1 ) = XLEFT
ELSE
NT = 0
IX = 1
IY = 1 + INEXT
END IF
*
IF( LRIGHT ) THEN
IYT = 1 + INEXT + ( NL-1 )*IINC
NT = NT + 1
XT( NT ) = XRIGHT
YT( NT ) = A( IYT )
END IF
*
* Check for errors
*
IF( NL.LT.NT ) THEN
CALL XERBLA( 'ZLAROT', 4 )
RETURN
END IF
IF( LDA.LE.0 .OR. ( .NOT.LROWS .AND. LDA.LT.NL-NT ) ) THEN
CALL XERBLA( 'ZLAROT', 8 )
RETURN
END IF
*
* Rotate
*
* ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S
*
DO 10 J = 0, NL - NT - 1
TEMPX = C*A( IX+J*IINC ) + S*A( IY+J*IINC )
A( IY+J*IINC ) = -DCONJG( S )*A( IX+J*IINC ) +
$ DCONJG( C )*A( IY+J*IINC )
A( IX+J*IINC ) = TEMPX
10 CONTINUE
*
* ZROT( NT, XT,1, YT,1, C, S ) with complex C, S
*
DO 20 J = 1, NT
TEMPX = C*XT( J ) + S*YT( J )
YT( J ) = -DCONJG( S )*XT( J ) + DCONJG( C )*YT( J )
XT( J ) = TEMPX
20 CONTINUE
*
* Stuff values back into XLEFT, XRIGHT, etc.
*
IF( LLEFT ) THEN
A( 1 ) = XT( 1 )
XLEFT = YT( 1 )
END IF
*
IF( LRIGHT ) THEN
XRIGHT = XT( NT )
A( IYT ) = YT( NT )
END IF
*
RETURN
*
* End of ZLAROT
*
END