You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1014 lines
40 KiB
1014 lines
40 KiB
*> \brief \b SDRVLS
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
|
|
* NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
|
|
* COPYB, C, S, COPYS, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER NM, NN, NNB, NNS, NOUT
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
|
|
* $ NVAL( * ), NXVAL( * )
|
|
* REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
|
|
* $ COPYS( * ), S( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SDRVLS tests the least squares driver routines SGELS, SGELST,
|
|
*> SGETSLS, SGELSS, SGELSY and SGELSD.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> The matrix of type j is generated as follows:
|
|
*> j=1: A = U*D*V where U and V are random orthogonal matrices
|
|
*> and D has random entries (> 0.1) taken from a uniform
|
|
*> distribution (0,1). A is full rank.
|
|
*> j=2: The same of 1, but A is scaled up.
|
|
*> j=3: The same of 1, but A is scaled down.
|
|
*> j=4: A = U*D*V where U and V are random orthogonal matrices
|
|
*> and D has 3*min(M,N)/4 random entries (> 0.1) taken
|
|
*> from a uniform distribution (0,1) and the remaining
|
|
*> entries set to 0. A is rank-deficient.
|
|
*> j=5: The same of 4, but A is scaled up.
|
|
*> j=6: The same of 5, but A is scaled down.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NM
|
|
*> \verbatim
|
|
*> NM is INTEGER
|
|
*> The number of values of M contained in the vector MVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MVAL
|
|
*> \verbatim
|
|
*> MVAL is INTEGER array, dimension (NM)
|
|
*> The values of the matrix row dimension M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix column dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNS
|
|
*> \verbatim
|
|
*> NNS is INTEGER
|
|
*> The number of values of NRHS contained in the vector NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSVAL
|
|
*> \verbatim
|
|
*> NSVAL is INTEGER array, dimension (NNS)
|
|
*> The values of the number of right hand sides NRHS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNB
|
|
*> \verbatim
|
|
*> NNB is INTEGER
|
|
*> The number of values of NB and NX contained in the
|
|
*> vectors NBVAL and NXVAL. The blocking parameters are used
|
|
*> in pairs (NB,NX).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NBVAL
|
|
*> \verbatim
|
|
*> NBVAL is INTEGER array, dimension (NNB)
|
|
*> The values of the blocksize NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NXVAL
|
|
*> \verbatim
|
|
*> NXVAL is INTEGER array, dimension (NNB)
|
|
*> The values of the crossover point NX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (MMAX*NMAX)
|
|
*> where MMAX is the maximum value of M in MVAL and NMAX is the
|
|
*> maximum value of N in NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] COPYA
|
|
*> \verbatim
|
|
*> COPYA is REAL array, dimension (MMAX*NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (MMAX*NSMAX)
|
|
*> where MMAX is the maximum value of M in MVAL and NSMAX is the
|
|
*> maximum value of NRHS in NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] COPYB
|
|
*> \verbatim
|
|
*> COPYB is REAL array, dimension (MMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is REAL array, dimension (MMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension
|
|
*> (min(MMAX,NMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] COPYS
|
|
*> \verbatim
|
|
*> COPYS is REAL array, dimension
|
|
*> (min(MMAX,NMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
|
|
$ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
|
|
$ COPYB, C, S, COPYS, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER NM, NN, NNB, NNS, NOUT
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
|
|
$ NVAL( * ), NXVAL( * )
|
|
REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
|
|
$ COPYS( * ), S( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER NTESTS
|
|
PARAMETER ( NTESTS = 18 )
|
|
INTEGER SMLSIZ
|
|
PARAMETER ( SMLSIZ = 25 )
|
|
REAL ONE, TWO, ZERO
|
|
PARAMETER ( ONE = 1.0E0, TWO = 2.0E0, ZERO = 0.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER TRANS
|
|
CHARACTER*3 PATH
|
|
INTEGER CRANK, I, IM, IMB, IN, INB, INFO, INS, IRANK,
|
|
$ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
|
|
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
|
|
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
|
|
$ MMAX, NMAX, NSMAX, LIWORK,
|
|
$ LWORK_SGELS, LWORK_SGELST, LWORK_SGETSLS,
|
|
$ LWORK_SGELSS, LWORK_SGELSY, LWORK_SGELSD
|
|
REAL EPS, NORMA, NORMB, RCOND
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 ), IWQ( 1 )
|
|
REAL RESULT( NTESTS ), WQ( 1 )
|
|
* ..
|
|
* .. Allocatable Arrays ..
|
|
REAL, ALLOCATABLE :: WORK (:)
|
|
INTEGER, ALLOCATABLE :: IWORK (:)
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
|
|
EXTERNAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS,
|
|
$ SGELSD, SGELSS, SGELST, SGELSY, SGEMM,
|
|
$ SGETSLS, SLACPY, SLARNV, SQRT13, SQRT15,
|
|
$ SQRT16, SSCAL, XLAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC INT, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, IOUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 1988, 1989, 1990, 1991 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Initialize constants and the random number seed.
|
|
*
|
|
PATH( 1: 1 ) = 'SINGLE PRECISION'
|
|
PATH( 2: 3 ) = 'LS'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
*
|
|
* Threshold for rank estimation
|
|
*
|
|
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
|
|
*
|
|
* Test the error exits
|
|
*
|
|
CALL XLAENV( 2, 2 )
|
|
CALL XLAENV( 9, SMLSIZ )
|
|
IF( TSTERR )
|
|
$ CALL SERRLS( PATH, NOUT )
|
|
*
|
|
* Print the header if NM = 0 or NN = 0 and THRESH = 0.
|
|
*
|
|
IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
INFOT = 0
|
|
CALL XLAENV( 2, 2 )
|
|
CALL XLAENV( 9, SMLSIZ )
|
|
*
|
|
* Compute maximal workspace needed for all routines
|
|
*
|
|
NMAX = 0
|
|
MMAX = 0
|
|
NSMAX = 0
|
|
DO I = 1, NM
|
|
IF ( MVAL( I ).GT.MMAX ) THEN
|
|
MMAX = MVAL( I )
|
|
END IF
|
|
ENDDO
|
|
DO I = 1, NN
|
|
IF ( NVAL( I ).GT.NMAX ) THEN
|
|
NMAX = NVAL( I )
|
|
END IF
|
|
ENDDO
|
|
DO I = 1, NNS
|
|
IF ( NSVAL( I ).GT.NSMAX ) THEN
|
|
NSMAX = NSVAL( I )
|
|
END IF
|
|
ENDDO
|
|
M = MMAX
|
|
N = NMAX
|
|
NRHS = NSMAX
|
|
MNMIN = MAX( MIN( M, N ), 1 )
|
|
*
|
|
* Compute workspace needed for routines
|
|
* SQRT14, SQRT17 (two side cases), SQRT15 and SQRT12
|
|
*
|
|
LWORK = MAX( 1, ( M+N )*NRHS,
|
|
$ ( N+NRHS )*( M+2 ), ( M+NRHS )*( N+2 ),
|
|
$ MAX( M+MNMIN, NRHS*MNMIN,2*N+M ),
|
|
$ MAX( M*N+4*MNMIN+MAX(M,N), M*N+2*MNMIN+4*N ) )
|
|
LIWORK = 1
|
|
*
|
|
* Iterate through all test cases and compute necessary workspace
|
|
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
|
|
* routines.
|
|
*
|
|
DO IM = 1, NM
|
|
M = MVAL( IM )
|
|
LDA = MAX( 1, M )
|
|
DO IN = 1, NN
|
|
N = NVAL( IN )
|
|
MNMIN = MAX(MIN( M, N ),1)
|
|
LDB = MAX( 1, M, N )
|
|
DO INS = 1, NNS
|
|
NRHS = NSVAL( INS )
|
|
DO IRANK = 1, 2
|
|
DO ISCALE = 1, 3
|
|
ITYPE = ( IRANK-1 )*3 + ISCALE
|
|
IF( DOTYPE( ITYPE ) ) THEN
|
|
IF( IRANK.EQ.1 ) THEN
|
|
DO ITRAN = 1, 2
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
TRANS = 'N'
|
|
ELSE
|
|
TRANS = 'T'
|
|
END IF
|
|
*
|
|
* Compute workspace needed for SGELS
|
|
CALL SGELS( TRANS, M, N, NRHS, A, LDA,
|
|
$ B, LDB, WQ( 1 ), -1, INFO )
|
|
LWORK_SGELS = INT ( WQ( 1 ) )
|
|
* Compute workspace needed for SGELST
|
|
CALL SGELST( TRANS, M, N, NRHS, A, LDA,
|
|
$ B, LDB, WQ, -1, INFO )
|
|
LWORK_SGELST = INT ( WQ ( 1 ) )
|
|
* Compute workspace needed for SGETSLS
|
|
CALL SGETSLS( TRANS, M, N, NRHS, A, LDA,
|
|
$ B, LDB, WQ( 1 ), -1, INFO )
|
|
LWORK_SGETSLS = INT( WQ( 1 ) )
|
|
ENDDO
|
|
END IF
|
|
* Compute workspace needed for SGELSY
|
|
CALL SGELSY( M, N, NRHS, A, LDA, B, LDB, IWQ,
|
|
$ RCOND, CRANK, WQ, -1, INFO )
|
|
LWORK_SGELSY = INT( WQ( 1 ) )
|
|
* Compute workspace needed for SGELSS
|
|
CALL SGELSS( M, N, NRHS, A, LDA, B, LDB, S,
|
|
$ RCOND, CRANK, WQ, -1 , INFO )
|
|
LWORK_SGELSS = INT( WQ( 1 ) )
|
|
* Compute workspace needed for SGELSD
|
|
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
|
|
$ RCOND, CRANK, WQ, -1, IWQ, INFO )
|
|
LWORK_SGELSD = INT( WQ( 1 ) )
|
|
* Compute LIWORK workspace needed for SGELSY and SGELSD
|
|
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
|
|
* Compute LWORK workspace needed for all functions
|
|
LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGELST,
|
|
$ LWORK_SGETSLS, LWORK_SGELSY,
|
|
$ LWORK_SGELSS, LWORK_SGELSD )
|
|
END IF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
*
|
|
LWLSY = LWORK
|
|
*
|
|
ALLOCATE( WORK( LWORK ) )
|
|
ALLOCATE( IWORK( LIWORK ) )
|
|
*
|
|
DO 150 IM = 1, NM
|
|
M = MVAL( IM )
|
|
LDA = MAX( 1, M )
|
|
*
|
|
DO 140 IN = 1, NN
|
|
N = NVAL( IN )
|
|
MNMIN = MAX(MIN( M, N ),1)
|
|
LDB = MAX( 1, M, N )
|
|
MB = (MNMIN+1)
|
|
*
|
|
DO 130 INS = 1, NNS
|
|
NRHS = NSVAL( INS )
|
|
*
|
|
DO 120 IRANK = 1, 2
|
|
DO 110 ISCALE = 1, 3
|
|
ITYPE = ( IRANK-1 )*3 + ISCALE
|
|
IF( .NOT.DOTYPE( ITYPE ) )
|
|
$ GO TO 110
|
|
* =====================================================
|
|
* Begin test SGELS
|
|
* =====================================================
|
|
IF( IRANK.EQ.1 ) THEN
|
|
*
|
|
* Generate a matrix of scaling type ISCALE
|
|
*
|
|
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
|
|
$ ISEED )
|
|
*
|
|
* Loop for testing different block sizes.
|
|
*
|
|
DO INB = 1, NNB
|
|
NB = NBVAL( INB )
|
|
CALL XLAENV( 1, NB )
|
|
CALL XLAENV( 3, NXVAL( INB ) )
|
|
*
|
|
* Loop for testing non-transposed and transposed.
|
|
*
|
|
DO ITRAN = 1, 2
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
TRANS = 'N'
|
|
NROWS = M
|
|
NCOLS = N
|
|
ELSE
|
|
TRANS = 'T'
|
|
NROWS = N
|
|
NCOLS = M
|
|
END IF
|
|
LDWORK = MAX( 1, NCOLS )
|
|
*
|
|
* Set up a consistent rhs
|
|
*
|
|
IF( NCOLS.GT.0 ) THEN
|
|
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
|
|
$ WORK )
|
|
CALL SSCAL( NCOLS*NRHS,
|
|
$ ONE / REAL( NCOLS ), WORK,
|
|
$ 1 )
|
|
END IF
|
|
CALL SGEMM( TRANS, 'No transpose', NROWS,
|
|
$ NRHS, NCOLS, ONE, COPYA, LDA,
|
|
$ WORK, LDWORK, ZERO, B, LDB )
|
|
CALL SLACPY( 'Full', NROWS, NRHS, B, LDB,
|
|
$ COPYB, LDB )
|
|
*
|
|
* Solve LS or overdetermined system
|
|
*
|
|
IF( M.GT.0 .AND. N.GT.0 ) THEN
|
|
CALL SLACPY( 'Full', M, N, COPYA, LDA,
|
|
$ A, LDA )
|
|
CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, B, LDB )
|
|
END IF
|
|
SRNAMT = 'SGELS '
|
|
CALL SGELS( TRANS, M, N, NRHS, A, LDA, B,
|
|
$ LDB, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGELS ', INFO, 0,
|
|
$ TRANS, M, N, NRHS, -1, NB,
|
|
$ ITYPE, NFAIL, NERRS,
|
|
$ NOUT )
|
|
*
|
|
* Test 1: Check correctness of results
|
|
* for SGELS, compute the residual:
|
|
* RESID = norm(B - A*X) /
|
|
* / ( max(m,n) * norm(A) * norm(X) * EPS )
|
|
*
|
|
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
|
|
$ CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, C, LDB )
|
|
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
|
|
$ LDA, B, LDB, C, LDB, WORK,
|
|
$ RESULT( 1 ) )
|
|
*
|
|
* Test 2: Check correctness of results
|
|
* for SGELS.
|
|
*
|
|
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
|
|
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
|
|
*
|
|
* Solving LS system, compute:
|
|
* r = norm((B- A*X)**T * A) /
|
|
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
|
|
*
|
|
RESULT( 2 ) = SQRT17( TRANS, 1, M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ COPYB, LDB, C, WORK,
|
|
$ LWORK )
|
|
ELSE
|
|
*
|
|
* Solving overdetermined system
|
|
*
|
|
RESULT( 2 ) = SQRT14( TRANS, M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ WORK, LWORK )
|
|
END IF
|
|
*
|
|
* Print information about the tests that
|
|
* did not pass the threshold.
|
|
*
|
|
DO K = 1, 2
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 )TRANS, M,
|
|
$ N, NRHS, NB, ITYPE, K,
|
|
$ RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
END DO
|
|
NRUN = NRUN + 2
|
|
END DO
|
|
END DO
|
|
END IF
|
|
* =====================================================
|
|
* End test SGELS
|
|
* =====================================================
|
|
* =====================================================
|
|
* Begin test SGELST
|
|
* =====================================================
|
|
IF( IRANK.EQ.1 ) THEN
|
|
*
|
|
* Generate a matrix of scaling type ISCALE
|
|
*
|
|
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
|
|
$ ISEED )
|
|
*
|
|
* Loop for testing different block sizes.
|
|
*
|
|
DO INB = 1, NNB
|
|
NB = NBVAL( INB )
|
|
CALL XLAENV( 1, NB )
|
|
*
|
|
* Loop for testing non-transposed and transposed.
|
|
*
|
|
DO ITRAN = 1, 2
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
TRANS = 'N'
|
|
NROWS = M
|
|
NCOLS = N
|
|
ELSE
|
|
TRANS = 'T'
|
|
NROWS = N
|
|
NCOLS = M
|
|
END IF
|
|
LDWORK = MAX( 1, NCOLS )
|
|
*
|
|
* Set up a consistent rhs
|
|
*
|
|
IF( NCOLS.GT.0 ) THEN
|
|
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
|
|
$ WORK )
|
|
CALL SSCAL( NCOLS*NRHS,
|
|
$ ONE / REAL( NCOLS ), WORK,
|
|
$ 1 )
|
|
END IF
|
|
CALL SGEMM( TRANS, 'No transpose', NROWS,
|
|
$ NRHS, NCOLS, ONE, COPYA, LDA,
|
|
$ WORK, LDWORK, ZERO, B, LDB )
|
|
CALL SLACPY( 'Full', NROWS, NRHS, B, LDB,
|
|
$ COPYB, LDB )
|
|
*
|
|
* Solve LS or overdetermined system
|
|
*
|
|
IF( M.GT.0 .AND. N.GT.0 ) THEN
|
|
CALL SLACPY( 'Full', M, N, COPYA, LDA,
|
|
$ A, LDA )
|
|
CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, B, LDB )
|
|
END IF
|
|
SRNAMT = 'SGELST'
|
|
CALL SGELST( TRANS, M, N, NRHS, A, LDA, B,
|
|
$ LDB, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGELST', INFO, 0,
|
|
$ TRANS, M, N, NRHS, -1, NB,
|
|
$ ITYPE, NFAIL, NERRS,
|
|
$ NOUT )
|
|
*
|
|
* Test 3: Check correctness of results
|
|
* for SGELST, compute the residual:
|
|
* RESID = norm(B - A*X) /
|
|
* / ( max(m,n) * norm(A) * norm(X) * EPS )
|
|
*
|
|
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
|
|
$ CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, C, LDB )
|
|
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
|
|
$ LDA, B, LDB, C, LDB, WORK,
|
|
$ RESULT( 3 ) )
|
|
*
|
|
* Test 4: Check correctness of results
|
|
* for SGELST.
|
|
*
|
|
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
|
|
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
|
|
*
|
|
* Solving LS system, compute:
|
|
* r = norm((B- A*X)**T * A) /
|
|
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
|
|
*
|
|
RESULT( 4 ) = SQRT17( TRANS, 1, M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ COPYB, LDB, C, WORK,
|
|
$ LWORK )
|
|
ELSE
|
|
*
|
|
* Solving overdetermined system
|
|
*
|
|
RESULT( 4 ) = SQRT14( TRANS, M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ WORK, LWORK )
|
|
END IF
|
|
*
|
|
* Print information about the tests that
|
|
* did not pass the threshold.
|
|
*
|
|
DO K = 3, 4
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 ) TRANS, M,
|
|
$ N, NRHS, NB, ITYPE, K,
|
|
$ RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
END DO
|
|
NRUN = NRUN + 2
|
|
END DO
|
|
END DO
|
|
END IF
|
|
* =====================================================
|
|
* End test SGELST
|
|
* =====================================================
|
|
* =====================================================
|
|
* Begin test SGETSLS
|
|
* =====================================================
|
|
IF( IRANK.EQ.1 ) THEN
|
|
*
|
|
* Generate a matrix of scaling type ISCALE
|
|
*
|
|
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
|
|
$ ISEED )
|
|
*
|
|
* Loop for testing different block sizes MB.
|
|
*
|
|
DO IMB = 1, NNB
|
|
MB = NBVAL( IMB )
|
|
CALL XLAENV( 1, MB )
|
|
*
|
|
* Loop for testing different block sizes NB.
|
|
*
|
|
DO INB = 1, NNB
|
|
NB = NBVAL( INB )
|
|
CALL XLAENV( 2, NB )
|
|
*
|
|
* Loop for testing non-transposed
|
|
* and transposed.
|
|
*
|
|
DO ITRAN = 1, 2
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
TRANS = 'N'
|
|
NROWS = M
|
|
NCOLS = N
|
|
ELSE
|
|
TRANS = 'T'
|
|
NROWS = N
|
|
NCOLS = M
|
|
END IF
|
|
LDWORK = MAX( 1, NCOLS )
|
|
*
|
|
* Set up a consistent rhs
|
|
*
|
|
IF( NCOLS.GT.0 ) THEN
|
|
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
|
|
$ WORK )
|
|
CALL SSCAL( NCOLS*NRHS,
|
|
$ ONE / REAL( NCOLS ),
|
|
$ WORK, 1 )
|
|
END IF
|
|
CALL SGEMM( TRANS, 'No transpose',
|
|
$ NROWS, NRHS, NCOLS, ONE,
|
|
$ COPYA, LDA, WORK, LDWORK,
|
|
$ ZERO, B, LDB )
|
|
CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ B, LDB, COPYB, LDB )
|
|
*
|
|
* Solve LS or overdetermined system
|
|
*
|
|
IF( M.GT.0 .AND. N.GT.0 ) THEN
|
|
CALL SLACPY( 'Full', M, N,
|
|
$ COPYA, LDA, A, LDA )
|
|
CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, B, LDB )
|
|
END IF
|
|
SRNAMT = 'SGETSLS'
|
|
CALL SGETSLS( TRANS, M, N, NRHS,
|
|
$ A, LDA, B, LDB, WORK, LWORK,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGETSLS', INFO,
|
|
$ 0, TRANS, M, N, NRHS,
|
|
$ -1, NB, ITYPE, NFAIL,
|
|
$ NERRS, NOUT )
|
|
*
|
|
* Test 5: Check correctness of results
|
|
* for SGETSLS, compute the residual:
|
|
* RESID = norm(B - A*X) /
|
|
* / ( max(m,n) * norm(A) * norm(X) * EPS )
|
|
*
|
|
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
|
|
$ CALL SLACPY( 'Full', NROWS, NRHS,
|
|
$ COPYB, LDB, C, LDB )
|
|
CALL SQRT16( TRANS, M, N, NRHS,
|
|
$ COPYA, LDA, B, LDB,
|
|
$ C, LDB, WORK,
|
|
$ RESULT( 5 ) )
|
|
*
|
|
* Test 6: Check correctness of results
|
|
* for SGETSLS.
|
|
*
|
|
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
|
|
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
|
|
*
|
|
* Solving LS system, compute:
|
|
* r = norm((B- A*X)**T * A) /
|
|
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
|
|
*
|
|
RESULT( 6 ) = SQRT17( TRANS, 1, M,
|
|
$ N, NRHS, COPYA, LDA,
|
|
$ B, LDB, COPYB, LDB,
|
|
$ C, WORK, LWORK )
|
|
ELSE
|
|
*
|
|
* Solving overdetermined system
|
|
*
|
|
RESULT( 6 ) = SQRT14( TRANS, M, N,
|
|
$ NRHS, COPYA, LDA,
|
|
$ B, LDB, WORK, LWORK )
|
|
END IF
|
|
*
|
|
* Print information about the tests that
|
|
* did not pass the threshold.
|
|
*
|
|
DO K = 5, 6
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9997 ) TRANS,
|
|
$ M, N, NRHS, MB, NB, ITYPE,
|
|
$ K, RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
END DO
|
|
NRUN = NRUN + 2
|
|
END DO
|
|
END DO
|
|
END DO
|
|
END IF
|
|
* =====================================================
|
|
* End test SGETSLS
|
|
* =====================================================
|
|
*
|
|
* Generate a matrix of scaling type ISCALE and rank
|
|
* type IRANK.
|
|
*
|
|
CALL SQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
|
|
$ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
|
|
$ ISEED, WORK, LWORK )
|
|
*
|
|
* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
|
|
*
|
|
LDWORK = MAX( 1, M )
|
|
*
|
|
* Loop for testing different block sizes.
|
|
*
|
|
DO 100 INB = 1, NNB
|
|
NB = NBVAL( INB )
|
|
CALL XLAENV( 1, NB )
|
|
CALL XLAENV( 3, NXVAL( INB ) )
|
|
*
|
|
* Test SGELSY
|
|
*
|
|
* SGELSY: Compute the minimum-norm solution X
|
|
* to min( norm( A * X - B ) )
|
|
* using the rank-revealing orthogonal
|
|
* factorization.
|
|
*
|
|
* Initialize vector IWORK.
|
|
*
|
|
DO 70 J = 1, N
|
|
IWORK( J ) = 0
|
|
70 CONTINUE
|
|
*
|
|
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
|
|
$ LDB )
|
|
*
|
|
SRNAMT = 'SGELSY'
|
|
CALL SGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
|
|
$ RCOND, CRANK, WORK, LWLSY, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGELSY', INFO, 0, ' ', M,
|
|
$ N, NRHS, -1, NB, ITYPE, NFAIL,
|
|
$ NERRS, NOUT )
|
|
*
|
|
* Test 7: Compute relative error in svd
|
|
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
|
|
*
|
|
RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA,
|
|
$ COPYS, WORK, LWORK )
|
|
*
|
|
* Test 8: Compute error in solution
|
|
* workspace: M*NRHS + M
|
|
*
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
|
|
$ LDWORK )
|
|
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
|
|
$ LDA, B, LDB, WORK, LDWORK,
|
|
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
|
|
*
|
|
* Test 9: Check norm of r'*A
|
|
* workspace: NRHS*(M+N)
|
|
*
|
|
RESULT( 9 ) = ZERO
|
|
IF( M.GT.CRANK )
|
|
$ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
|
|
$ N, NRHS, COPYA, LDA, B, LDB,
|
|
$ COPYB, LDB, C, WORK, LWORK )
|
|
*
|
|
* Test 10: Check if x is in the rowspace of A
|
|
* workspace: (M+NRHS)*(N+2)
|
|
*
|
|
RESULT( 10 ) = ZERO
|
|
*
|
|
IF( N.GT.CRANK )
|
|
$ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ WORK, LWORK )
|
|
*
|
|
* Test SGELSS
|
|
*
|
|
* SGELSS: Compute the minimum-norm solution X
|
|
* to min( norm( A * X - B ) )
|
|
* using the SVD.
|
|
*
|
|
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
|
|
$ LDB )
|
|
SRNAMT = 'SGELSS'
|
|
CALL SGELSS( M, N, NRHS, A, LDA, B, LDB, S,
|
|
$ RCOND, CRANK, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGELSS', INFO, 0, ' ', M,
|
|
$ N, NRHS, -1, NB, ITYPE, NFAIL,
|
|
$ NERRS, NOUT )
|
|
*
|
|
* workspace used: 3*min(m,n) +
|
|
* max(2*min(m,n),nrhs,max(m,n))
|
|
*
|
|
* Test 11: Compute relative error in svd
|
|
*
|
|
IF( RANK.GT.0 ) THEN
|
|
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
|
|
RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
|
|
$ SASUM( MNMIN, COPYS, 1 ) /
|
|
$ ( EPS*REAL( MNMIN ) )
|
|
ELSE
|
|
RESULT( 11 ) = ZERO
|
|
END IF
|
|
*
|
|
* Test 12: Compute error in solution
|
|
*
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
|
|
$ LDWORK )
|
|
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
|
|
$ LDA, B, LDB, WORK, LDWORK,
|
|
$ WORK( M*NRHS+1 ), RESULT( 12 ) )
|
|
*
|
|
* Test 13: Check norm of r'*A
|
|
*
|
|
RESULT( 13 ) = ZERO
|
|
IF( M.GT.CRANK )
|
|
$ RESULT( 13 ) = SQRT17( 'No transpose', 1, M,
|
|
$ N, NRHS, COPYA, LDA, B, LDB,
|
|
$ COPYB, LDB, C, WORK, LWORK )
|
|
*
|
|
* Test 14: Check if x is in the rowspace of A
|
|
*
|
|
RESULT( 14 ) = ZERO
|
|
IF( N.GT.CRANK )
|
|
$ RESULT( 14 ) = SQRT14( 'No transpose', M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ WORK, LWORK )
|
|
*
|
|
* Test SGELSD
|
|
*
|
|
* SGELSD: Compute the minimum-norm solution X
|
|
* to min( norm( A * X - B ) ) using a
|
|
* divide and conquer SVD.
|
|
*
|
|
* Initialize vector IWORK.
|
|
*
|
|
DO 80 J = 1, N
|
|
IWORK( J ) = 0
|
|
80 CONTINUE
|
|
*
|
|
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
|
|
$ LDB )
|
|
*
|
|
SRNAMT = 'SGELSD'
|
|
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
|
|
$ RCOND, CRANK, WORK, LWORK, IWORK,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SGELSD', INFO, 0, ' ', M,
|
|
$ N, NRHS, -1, NB, ITYPE, NFAIL,
|
|
$ NERRS, NOUT )
|
|
*
|
|
* Test 15: Compute relative error in svd
|
|
*
|
|
IF( RANK.GT.0 ) THEN
|
|
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
|
|
RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
|
|
$ SASUM( MNMIN, COPYS, 1 ) /
|
|
$ ( EPS*REAL( MNMIN ) )
|
|
ELSE
|
|
RESULT( 15 ) = ZERO
|
|
END IF
|
|
*
|
|
* Test 16: Compute error in solution
|
|
*
|
|
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
|
|
$ LDWORK )
|
|
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
|
|
$ LDA, B, LDB, WORK, LDWORK,
|
|
$ WORK( M*NRHS+1 ), RESULT( 16 ) )
|
|
*
|
|
* Test 17: Check norm of r'*A
|
|
*
|
|
RESULT( 17 ) = ZERO
|
|
IF( M.GT.CRANK )
|
|
$ RESULT( 17 ) = SQRT17( 'No transpose', 1, M,
|
|
$ N, NRHS, COPYA, LDA, B, LDB,
|
|
$ COPYB, LDB, C, WORK, LWORK )
|
|
*
|
|
* Test 18: Check if x is in the rowspace of A
|
|
*
|
|
RESULT( 18 ) = ZERO
|
|
IF( N.GT.CRANK )
|
|
$ RESULT( 18 ) = SQRT14( 'No transpose', M, N,
|
|
$ NRHS, COPYA, LDA, B, LDB,
|
|
$ WORK, LWORK )
|
|
*
|
|
* Print information about the tests that did not
|
|
* pass the threshold.
|
|
*
|
|
DO 90 K = 7, 18
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
|
|
$ ITYPE, K, RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
90 CONTINUE
|
|
NRUN = NRUN + 12
|
|
*
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
|
|
$ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
|
|
9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
|
|
$ ', type', I2, ', test(', I2, ')=', G12.5 )
|
|
9997 FORMAT( ' TRANS=''', A1,' M=', I5, ', N=', I5, ', NRHS=', I4,
|
|
$ ', MB=', I4,', NB=', I4,', type', I2,
|
|
$ ', test(', I2, ')=', G12.5 )
|
|
*
|
|
DEALLOCATE( WORK )
|
|
DEALLOCATE( IWORK )
|
|
RETURN
|
|
*
|
|
* End of SDRVLS
|
|
*
|
|
END
|
|
|