Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

666 lines
23 KiB

*> \brief \b CERRHE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CERRHE( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CERRHE tests the error exits for the COMPLEX routines
*> for Hermitian indefinite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CERRHE( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
REAL ANRM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX )
REAL R( NMAX ), R1( NMAX ), R2( NMAX )
COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ E( NMAX ), W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHECON, CSYCON_3, CHECON_ROOK, CHERFS,
$ CHETF2, CHETF2_RK, CHETF2_ROOK, CHETRF_AA,
$ CHETRF, CHETRF_RK, CHETRF_ROOK, CHETRI,
$ CHETRI_3, CHETRI_3X, CHETRI_ROOK, CHETRI2,
$ CHETRI2X, CHETRS, CHETRS_3, CHETRS_ROOK,
$ CHETRS_AA, CHKXER, CHPCON, CHPRFS, CHPTRF,
$ CHETRF_AA_2STAGE, CHETRS_AA_2STAGE,
$ CHPTRI, CHPTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, REAL
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
10 CONTINUE
B( J ) = 0.E+0
E( J ) = 0.E+0
R1( J ) = 0.E+0
R2( J ) = 0.E+0
W( J ) = 0.E+0
X( J ) = 0.E+0
IP( J ) = J
20 CONTINUE
ANRM = 1.0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
* CHETRF
*
SRNAMT = 'CHETRF'
INFOT = 1
CALL CHETRF( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRF( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRF( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK )
*
* CHETF2
*
SRNAMT = 'CHETF2'
INFOT = 1
CALL CHETF2( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETF2( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETF2( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK )
*
* CHETRI
*
SRNAMT = 'CHETRI'
INFOT = 1
CALL CHETRI( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK )
*
* CHETRI2
*
SRNAMT = 'CHETRI2'
INFOT = 1
CALL CHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
*
* CHETRI2X
*
SRNAMT = 'CHETRI2X'
INFOT = 1
CALL CHETRI2X( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK )
*
* CHETRS
*
SRNAMT = 'CHETRS'
INFOT = 1
CALL CHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK )
*
* CHERFS
*
SRNAMT = 'CHERFS'
INFOT = 1
CALL CHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK )
*
* CHECON
*
SRNAMT = 'CHECON'
INFOT = 1
CALL CHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with rook
* (bounded Bunch-Kaufman) diagonal pivoting method.
*
* CHETRF_ROOK
*
SRNAMT = 'CHETRF_ROOK'
INFOT = 1
CALL CHETRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK )
*
* CHETF2_ROOK
*
SRNAMT = 'CHETF2_ROOK'
INFOT = 1
CALL CHETF2_ROOK( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETF2_ROOK( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETF2_ROOK( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK )
*
* CHETRI_ROOK
*
SRNAMT = 'CHETRI_ROOK'
INFOT = 1
CALL CHETRI_ROOK( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK )
*
* CHETRS_ROOK
*
SRNAMT = 'CHETRS_ROOK'
INFOT = 1
CALL CHETRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHETRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHETRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK )
*
* CHECON_ROOK
*
SRNAMT = 'CHECON_ROOK'
INFOT = 1
CALL CHECON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHECON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHECON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHECON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HK' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting with the new storage
* format for factors L ( or U) and D.
*
* L (or U) is stored in A, diagonal of D is stored on the
* diagonal of A, subdiagonal of D is stored in a separate array E.
*
* CHETRF_RK
*
SRNAMT = 'CHETRF_RK'
INFOT = 1
CALL CHETRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK )
*
* CHETF2_RK
*
SRNAMT = 'CHETF2_RK'
INFOT = 1
CALL CHETF2_RK( '/', 0, A, 1, E, IP, INFO )
CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETF2_RK( 'U', -1, A, 1, E, IP, INFO )
CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETF2_RK( 'U', 2, A, 1, E, IP, INFO )
CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK )
*
* CHETRI_3
*
SRNAMT = 'CHETRI_3'
INFOT = 1
CALL CHETRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK )
*
* CHETRI_3X
*
SRNAMT = 'CHETRI_3X'
INFOT = 1
CALL CHETRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK )
*
* CHETRS_3
*
SRNAMT = 'CHETRS_3'
INFOT = 1
CALL CHETRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHETRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHETRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHETRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK )
*
* CHECON_3
*
SRNAMT = 'CHECON_3'
INFOT = 1
CALL CHECON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHECON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHECON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHECON_3( 'U', 1, A, 1, E, IP, -1.0E0, RCOND, W, INFO)
CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HA' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with Aasen's algorithm.
*
* CHETRF_AA
*
SRNAMT = 'CHETRF_AA'
INFOT = 1
CALL CHETRF_AA( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRF_AA( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRF_AA( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF_AA( 'U', 2, A, 2, IP, W, 0, INFO )
CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRF_AA( 'U', 2, A, 2, IP, W, -2, INFO )
CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK )
*
* CHETRS_AA
*
SRNAMT = 'CHETRS_AA'
INFOT = 1
CALL CHETRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHETRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHETRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 2, W, 0, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 2, W, -2, INFO )
CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'H2' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* CHETRF_AA_2STAGE
*
SRNAMT = 'CHETRF_AA_2STAGE'
INFOT = 1
CALL CHETRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHETRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHETRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHETRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0,
$ INFO )
CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
*
* CHETRS_AA_2STAGE
*
SRNAMT = 'CHETRS_AA_2STAGE'
INFOT = 1
CALL CHETRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHETRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHETRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK )
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
*
* CHPTRF
*
SRNAMT = 'CHPTRF'
INFOT = 1
CALL CHPTRF( '/', 0, A, IP, INFO )
CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPTRF( 'U', -1, A, IP, INFO )
CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK )
*
* CHPTRI
*
SRNAMT = 'CHPTRI'
INFOT = 1
CALL CHPTRI( '/', 0, A, IP, W, INFO )
CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPTRI( 'U', -1, A, IP, W, INFO )
CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK )
*
* CHPTRS
*
SRNAMT = 'CHPTRS'
INFOT = 1
CALL CHPTRS( '/', 0, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK )
*
* CHPRFS
*
SRNAMT = 'CHPRFS'
INFOT = 1
CALL CHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK )
*
* CHPCON
*
SRNAMT = 'CHPCON'
INFOT = 1
CALL CHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of CERRHE
*
END