You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
11 KiB
342 lines
11 KiB
2 years ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: $RCSfile: vtkImageNonMaximumSuppression.cxx,v $
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
#include "vtkImageNonMaximumSuppression.h"
|
||
|
|
||
|
#include "vtkImageData.h"
|
||
|
#include "vtkInformation.h"
|
||
|
#include "vtkInformationVector.h"
|
||
|
#include "vtkObjectFactory.h"
|
||
|
#include "vtkStreamingDemandDrivenPipeline.h"
|
||
|
#include "vtkPointData.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
vtkCxxRevisionMacro(vtkImageNonMaximumSuppression, "$Revision: 1.55 $");
|
||
|
vtkStandardNewMacro(vtkImageNonMaximumSuppression);
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
// Construct an instance of vtkImageNonMaximumSuppression fitler.
|
||
|
vtkImageNonMaximumSuppression::vtkImageNonMaximumSuppression()
|
||
|
{
|
||
|
this->Dimensionality= 2;
|
||
|
this->HandleBoundaries = 1;
|
||
|
this->SetNumberOfInputPorts(2);
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
// This method is passed a region that holds the image extent of this filters
|
||
|
// input, and changes the region to hold the image extent of this filters
|
||
|
// output.
|
||
|
int vtkImageNonMaximumSuppression::RequestInformation (
|
||
|
vtkInformation * vtkNotUsed(request),
|
||
|
vtkInformationVector **inputVector,
|
||
|
vtkInformationVector *outputVector)
|
||
|
{
|
||
|
// get the info objects
|
||
|
vtkInformation* outInfo = outputVector->GetInformationObject(0);
|
||
|
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
|
||
|
|
||
|
int extent[6];
|
||
|
int idx;
|
||
|
|
||
|
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent);
|
||
|
if ( ! this->HandleBoundaries)
|
||
|
{
|
||
|
// shrink output image extent.
|
||
|
for (idx = 0; idx < this->Dimensionality; ++idx)
|
||
|
{
|
||
|
extent[idx*2] += 1;
|
||
|
extent[idx*2+1] -= 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent,6);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
// This method computes the input extent necessary to generate the output.
|
||
|
int vtkImageNonMaximumSuppression::RequestUpdateExtent (
|
||
|
vtkInformation * vtkNotUsed(request),
|
||
|
vtkInformationVector **inputVector,
|
||
|
vtkInformationVector *outputVector)
|
||
|
{
|
||
|
// get the info objects
|
||
|
vtkInformation* outInfo = outputVector->GetInformationObject(0);
|
||
|
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
|
||
|
vtkInformation* inInfo2 = inputVector[1]->GetInformationObject(0);
|
||
|
|
||
|
int *wholeExtent;
|
||
|
int idx;
|
||
|
|
||
|
// get the whole image for input 2
|
||
|
int inExt[6];
|
||
|
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt);
|
||
|
wholeExtent = inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
|
||
|
inInfo2->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
|
||
|
|
||
|
// grow input image extent for input 0
|
||
|
for (idx = 0; idx < this->Dimensionality; ++idx)
|
||
|
{
|
||
|
inExt[idx*2] -= 1;
|
||
|
inExt[idx*2+1] += 1;
|
||
|
if (this->HandleBoundaries)
|
||
|
{
|
||
|
// we must clip extent with whole extent if we hanlde boundaries.
|
||
|
if (inExt[idx*2] < wholeExtent[idx*2])
|
||
|
{
|
||
|
inExt[idx*2] = wholeExtent[idx*2];
|
||
|
}
|
||
|
if (inExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
|
||
|
{
|
||
|
inExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
// This templated function executes the filter for any type of data.
|
||
|
// Handles the two input operations
|
||
|
template <class T>
|
||
|
void vtkImageNonMaximumSuppressionExecute(vtkImageNonMaximumSuppression *self,
|
||
|
vtkImageData *in1Data, T *in1Ptr,
|
||
|
vtkImageData *in2Data,
|
||
|
T *in2Ptr,
|
||
|
vtkImageData *outData,
|
||
|
T *outPtr,
|
||
|
int outExt[6], int id)
|
||
|
{
|
||
|
int idxC, idxX, idxY, idxZ;
|
||
|
int maxC, maxX, maxY, maxZ;
|
||
|
vtkIdType inIncX, inIncY, inIncZ;
|
||
|
vtkIdType in2IncX, in2IncY, in2IncZ;
|
||
|
vtkIdType outIncX, outIncY, outIncZ;
|
||
|
unsigned long count = 0;
|
||
|
unsigned long target;
|
||
|
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
|
||
|
double d, normalizeFactor, vector[3], *ratio;
|
||
|
int neighborA, neighborB;
|
||
|
int *wholeExtent;
|
||
|
vtkIdType *inIncs;
|
||
|
int axesNum;
|
||
|
|
||
|
// find the region to loop over
|
||
|
maxC = outData->GetNumberOfScalarComponents();
|
||
|
maxX = outExt[1] - outExt[0];
|
||
|
maxY = outExt[3] - outExt[2];
|
||
|
maxZ = outExt[5] - outExt[4];
|
||
|
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
|
||
|
target++;
|
||
|
|
||
|
// Get the dimensionality of the gradient.
|
||
|
axesNum = self->GetDimensionality();
|
||
|
// get some other info we need
|
||
|
inIncs = in1Data->GetIncrements();
|
||
|
wholeExtent = in1Data->GetExtent();
|
||
|
|
||
|
// Get increments to march through data
|
||
|
in1Data->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
|
||
|
in2Data->GetContinuousIncrements(outExt, in2IncX, in2IncY, in2IncZ);
|
||
|
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
|
||
|
|
||
|
|
||
|
// Gradient is computed with data spacing (world coordinates)
|
||
|
ratio = in2Data->GetSpacing();
|
||
|
|
||
|
// Loop through ouput pixels
|
||
|
for (idxZ = 0; idxZ <= maxZ; idxZ++)
|
||
|
{
|
||
|
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
|
||
|
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
|
||
|
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
|
||
|
{
|
||
|
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
|
||
|
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
|
||
|
if (!id)
|
||
|
{
|
||
|
if (!(count%target))
|
||
|
{
|
||
|
self->UpdateProgress(count/(50.0*target));
|
||
|
}
|
||
|
count++;
|
||
|
}
|
||
|
for (idxX = 0; idxX <= maxX; idxX++)
|
||
|
{
|
||
|
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
|
||
|
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
|
||
|
|
||
|
// calculate the neighbors
|
||
|
d = vector[0] = (double)*in2Ptr * ratio[0];
|
||
|
normalizeFactor = (d * d);
|
||
|
d = vector[1] = (double)in2Ptr[1] * ratio[1];
|
||
|
normalizeFactor += (d * d);
|
||
|
if (axesNum == 3)
|
||
|
{
|
||
|
d = vector[2] = (double)in2Ptr[2] * ratio[2];
|
||
|
normalizeFactor += (d * d);
|
||
|
}
|
||
|
if (normalizeFactor)
|
||
|
{
|
||
|
normalizeFactor = 1.0 / sqrt(normalizeFactor);
|
||
|
}
|
||
|
// Vector points positive along this idx?
|
||
|
// (can point along multiple axes)
|
||
|
d = vector[0] * normalizeFactor;
|
||
|
|
||
|
if (d > 0.5)
|
||
|
{
|
||
|
neighborA = useXMax;
|
||
|
neighborB = useXMin;
|
||
|
}
|
||
|
else if (d < -0.5)
|
||
|
{
|
||
|
neighborB = useXMax;
|
||
|
neighborA = useXMin;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
neighborA = 0;
|
||
|
neighborB = 0;
|
||
|
}
|
||
|
d = vector[1] * normalizeFactor;
|
||
|
if (d > 0.5)
|
||
|
{
|
||
|
neighborA += useYMax;
|
||
|
neighborB += useYMin;
|
||
|
}
|
||
|
else if (d < -0.5)
|
||
|
{
|
||
|
neighborB += useYMax;
|
||
|
neighborA += useYMin;
|
||
|
}
|
||
|
if (axesNum == 3)
|
||
|
{
|
||
|
d = vector[2] * normalizeFactor;
|
||
|
if (d > 0.5)
|
||
|
{
|
||
|
neighborA += useZMax;
|
||
|
neighborB += useZMin;
|
||
|
}
|
||
|
else if (d < -0.5)
|
||
|
{
|
||
|
neighborB += useZMax;
|
||
|
neighborA += useZMin;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// now process the components
|
||
|
for (idxC = 0; idxC < maxC; idxC++)
|
||
|
{
|
||
|
// Pixel operation
|
||
|
// Set Output Magnitude
|
||
|
if (in1Ptr[neighborA] > *in1Ptr || in1Ptr[neighborB] > *in1Ptr)
|
||
|
{
|
||
|
*outPtr = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
*outPtr = *in1Ptr;
|
||
|
// also check for them being equal is neighbor with larger ptr
|
||
|
if ((neighborA > neighborB)&&(in1Ptr[neighborA] == *in1Ptr))
|
||
|
{
|
||
|
*outPtr = 0;
|
||
|
}
|
||
|
else if ((neighborB > neighborA)&&(in1Ptr[neighborB] == *in1Ptr))
|
||
|
{
|
||
|
*outPtr = 0;
|
||
|
}
|
||
|
}
|
||
|
outPtr++;
|
||
|
in1Ptr++;
|
||
|
}
|
||
|
in2Ptr += axesNum;
|
||
|
}
|
||
|
outPtr += outIncY;
|
||
|
in1Ptr += inIncY;
|
||
|
in2Ptr += in2IncY;
|
||
|
}
|
||
|
outPtr += outIncZ;
|
||
|
in1Ptr += inIncZ;
|
||
|
in2Ptr += in2IncZ;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
// This method is passed a input and output regions, and executes the filter
|
||
|
// algorithm to fill the output from the inputs.
|
||
|
// It just executes a switch statement to call the correct function for
|
||
|
// the regions data types.
|
||
|
void vtkImageNonMaximumSuppression::ThreadedRequestData(
|
||
|
vtkInformation * vtkNotUsed( request ),
|
||
|
vtkInformationVector ** vtkNotUsed( inputVector ),
|
||
|
vtkInformationVector * vtkNotUsed( outputVector ),
|
||
|
vtkImageData ***inData,
|
||
|
vtkImageData **outData,
|
||
|
int outExt[6], int id)
|
||
|
{
|
||
|
void *in1Ptr;
|
||
|
void *in2Ptr;
|
||
|
void *outPtr;
|
||
|
|
||
|
if (id == 0)
|
||
|
{
|
||
|
if (outData[0] && outData[0]->GetPointData()->GetScalars())
|
||
|
{
|
||
|
outData[0]->GetPointData()->GetScalars()->SetName("SuppressedMaximum");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
in1Ptr = inData[0][0]->GetScalarPointerForExtent(outExt);
|
||
|
in2Ptr = inData[1][0]->GetScalarPointerForExtent(outExt);
|
||
|
outPtr = outData[0]->GetScalarPointerForExtent(outExt);
|
||
|
|
||
|
// this filter expects that input is the same type as output.
|
||
|
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType() ||
|
||
|
inData[1][0]->GetScalarType() != outData[0]->GetScalarType())
|
||
|
{
|
||
|
vtkErrorMacro(<< "Execute: input ScalarType, " <<
|
||
|
inData[0][0]->GetScalarType()
|
||
|
<< ", must match out ScalarType " << outData[0]->GetScalarType());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (inData[0][0]->GetScalarType())
|
||
|
{
|
||
|
vtkTemplateMacro(
|
||
|
vtkImageNonMaximumSuppressionExecute(this, inData[0][0],
|
||
|
(VTK_TT *)(in1Ptr),inData[1][0],
|
||
|
(VTK_TT *)(in2Ptr),
|
||
|
outData[0], (VTK_TT *)(outPtr),
|
||
|
outExt, id));
|
||
|
default:
|
||
|
vtkErrorMacro(<< "Execute: Unknown ScalarType");
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void vtkImageNonMaximumSuppression::PrintSelf(ostream& os, vtkIndent indent)
|
||
|
{
|
||
|
this->Superclass::PrintSelf(os,indent);
|
||
|
|
||
|
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
|
||
|
|
||
|
os << indent << "HandleBoundaries: " << (this->HandleBoundaries ? "On\n" : "Off\n");
|
||
|
}
|