Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

341 lines
11 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageNonMaximumSuppression.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageNonMaximumSuppression.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkPointData.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageNonMaximumSuppression, "$Revision: 1.55 $");
vtkStandardNewMacro(vtkImageNonMaximumSuppression);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageNonMaximumSuppression fitler.
vtkImageNonMaximumSuppression::vtkImageNonMaximumSuppression()
{
this->Dimensionality= 2;
this->HandleBoundaries = 1;
this->SetNumberOfInputPorts(2);
}
//----------------------------------------------------------------------------
// This method is passed a region that holds the image extent of this filters
// input, and changes the region to hold the image extent of this filters
// output.
int vtkImageNonMaximumSuppression::RequestInformation (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int extent[6];
int idx;
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent);
if ( ! this->HandleBoundaries)
{
// shrink output image extent.
for (idx = 0; idx < this->Dimensionality; ++idx)
{
extent[idx*2] += 1;
extent[idx*2+1] -= 1;
}
}
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent,6);
return 1;
}
//----------------------------------------------------------------------------
// This method computes the input extent necessary to generate the output.
int vtkImageNonMaximumSuppression::RequestUpdateExtent (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation* inInfo2 = inputVector[1]->GetInformationObject(0);
int *wholeExtent;
int idx;
// get the whole image for input 2
int inExt[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt);
wholeExtent = inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
inInfo2->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
// grow input image extent for input 0
for (idx = 0; idx < this->Dimensionality; ++idx)
{
inExt[idx*2] -= 1;
inExt[idx*2+1] += 1;
if (this->HandleBoundaries)
{
// we must clip extent with whole extent if we hanlde boundaries.
if (inExt[idx*2] < wholeExtent[idx*2])
{
inExt[idx*2] = wholeExtent[idx*2];
}
if (inExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
{
inExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
}
}
}
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
return 1;
}
//----------------------------------------------------------------------------
// This templated function executes the filter for any type of data.
// Handles the two input operations
template <class T>
void vtkImageNonMaximumSuppressionExecute(vtkImageNonMaximumSuppression *self,
vtkImageData *in1Data, T *in1Ptr,
vtkImageData *in2Data,
T *in2Ptr,
vtkImageData *outData,
T *outPtr,
int outExt[6], int id)
{
int idxC, idxX, idxY, idxZ;
int maxC, maxX, maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType in2IncX, in2IncY, in2IncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
double d, normalizeFactor, vector[3], *ratio;
int neighborA, neighborB;
int *wholeExtent;
vtkIdType *inIncs;
int axesNum;
// find the region to loop over
maxC = outData->GetNumberOfScalarComponents();
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
target++;
// Get the dimensionality of the gradient.
axesNum = self->GetDimensionality();
// get some other info we need
inIncs = in1Data->GetIncrements();
wholeExtent = in1Data->GetExtent();
// Get increments to march through data
in1Data->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
in2Data->GetContinuousIncrements(outExt, in2IncX, in2IncY, in2IncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// Gradient is computed with data spacing (world coordinates)
ratio = in2Data->GetSpacing();
// Loop through ouput pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
for (idxX = 0; idxX <= maxX; idxX++)
{
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
// calculate the neighbors
d = vector[0] = (double)*in2Ptr * ratio[0];
normalizeFactor = (d * d);
d = vector[1] = (double)in2Ptr[1] * ratio[1];
normalizeFactor += (d * d);
if (axesNum == 3)
{
d = vector[2] = (double)in2Ptr[2] * ratio[2];
normalizeFactor += (d * d);
}
if (normalizeFactor)
{
normalizeFactor = 1.0 / sqrt(normalizeFactor);
}
// Vector points positive along this idx?
// (can point along multiple axes)
d = vector[0] * normalizeFactor;
if (d > 0.5)
{
neighborA = useXMax;
neighborB = useXMin;
}
else if (d < -0.5)
{
neighborB = useXMax;
neighborA = useXMin;
}
else
{
neighborA = 0;
neighborB = 0;
}
d = vector[1] * normalizeFactor;
if (d > 0.5)
{
neighborA += useYMax;
neighborB += useYMin;
}
else if (d < -0.5)
{
neighborB += useYMax;
neighborA += useYMin;
}
if (axesNum == 3)
{
d = vector[2] * normalizeFactor;
if (d > 0.5)
{
neighborA += useZMax;
neighborB += useZMin;
}
else if (d < -0.5)
{
neighborB += useZMax;
neighborA += useZMin;
}
}
// now process the components
for (idxC = 0; idxC < maxC; idxC++)
{
// Pixel operation
// Set Output Magnitude
if (in1Ptr[neighborA] > *in1Ptr || in1Ptr[neighborB] > *in1Ptr)
{
*outPtr = 0;
}
else
{
*outPtr = *in1Ptr;
// also check for them being equal is neighbor with larger ptr
if ((neighborA > neighborB)&&(in1Ptr[neighborA] == *in1Ptr))
{
*outPtr = 0;
}
else if ((neighborB > neighborA)&&(in1Ptr[neighborB] == *in1Ptr))
{
*outPtr = 0;
}
}
outPtr++;
in1Ptr++;
}
in2Ptr += axesNum;
}
outPtr += outIncY;
in1Ptr += inIncY;
in2Ptr += in2IncY;
}
outPtr += outIncZ;
in1Ptr += inIncZ;
in2Ptr += in2IncZ;
}
}
//----------------------------------------------------------------------------
// This method is passed a input and output regions, and executes the filter
// algorithm to fill the output from the inputs.
// It just executes a switch statement to call the correct function for
// the regions data types.
void vtkImageNonMaximumSuppression::ThreadedRequestData(
vtkInformation * vtkNotUsed( request ),
vtkInformationVector ** vtkNotUsed( inputVector ),
vtkInformationVector * vtkNotUsed( outputVector ),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
void *in1Ptr;
void *in2Ptr;
void *outPtr;
if (id == 0)
{
if (outData[0] && outData[0]->GetPointData()->GetScalars())
{
outData[0]->GetPointData()->GetScalars()->SetName("SuppressedMaximum");
}
}
in1Ptr = inData[0][0]->GetScalarPointerForExtent(outExt);
in2Ptr = inData[1][0]->GetScalarPointerForExtent(outExt);
outPtr = outData[0]->GetScalarPointerForExtent(outExt);
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType() ||
inData[1][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, " <<
inData[0][0]->GetScalarType()
<< ", must match out ScalarType " << outData[0]->GetScalarType());
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageNonMaximumSuppressionExecute(this, inData[0][0],
(VTK_TT *)(in1Ptr),inData[1][0],
(VTK_TT *)(in2Ptr),
outData[0], (VTK_TT *)(outPtr),
outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
void vtkImageNonMaximumSuppression::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
os << indent << "HandleBoundaries: " << (this->HandleBoundaries ? "On\n" : "Off\n");
}