Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

101 lines
3.7 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkHexahedron.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkHexahedron - a cell that represents a linear 3D hexahedron
// .SECTION Description
// vtkHexahedron is a concrete implementation of vtkCell to represent a
// linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron
// uses the standard isoparametric shape functions for a linear
// hexahedron. The hexahedron is defined by the eight points (0-7) where
// (0,1,2,3) is the base of the hexahedron which, using the right hand rule,
// forms a quadrilaterial whose normal points in the direction of the
// opposite face (4,5,6,7).
// .SECTION See Also
// vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge
#ifndef __vtkHexahedron_h
#define __vtkHexahedron_h
#include "vtkCell3D.h"
class vtkLine;
class vtkQuad;
class VTK_FILTERING_EXPORT vtkHexahedron : public vtkCell3D
{
public:
static vtkHexahedron *New();
vtkTypeRevisionMacro(vtkHexahedron,vtkCell3D);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// See vtkCell3D API for description of these methods.
virtual void GetEdgePoints(int edgeId, int* &pts);
virtual void GetFacePoints(int faceId, int* &pts);
// Description:
// See the vtkCell API for descriptions of these methods.
int GetCellType() {return VTK_HEXAHEDRON;}
int GetNumberOfEdges() {return 12;}
int GetNumberOfFaces() {return 6;}
vtkCell *GetEdge(int edgeId);
vtkCell *GetFace(int faceId);
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
void Contour(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
virtual double *GetParametricCoords();
// Description:
// Hexahedron specific.
static void InterpolationFunctions(double pcoords[3], double weights[8]);
static void InterpolationDerivs(double pcoords[3], double derivs[24]);
static int *GetEdgeArray(int edgeId);
static int *GetFaceArray(int faceId);
// Description:
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void JacobianInverse(double pcoords[3], double **inverse, double derivs[24]);
protected:
vtkHexahedron();
~vtkHexahedron();
vtkLine *Line;
vtkQuad *Quad;
private:
vtkHexahedron(const vtkHexahedron&); // Not implemented.
void operator=(const vtkHexahedron&); // Not implemented.
};
#endif