Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

993 lines
27 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkTetra.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkTetra.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPointLocator.h"
#include "vtkTriangle.h"
#include "vtkUnstructuredGrid.h"
vtkCxxRevisionMacro(vtkTetra, "$Revision: 1.4 $");
vtkStandardNewMacro(vtkTetra);
//----------------------------------------------------------------------------
// Construct the tetra with four points.
vtkTetra::vtkTetra()
{
int i;
this->Points->SetNumberOfPoints(4);
this->PointIds->SetNumberOfIds(4);
for (i = 0; i < 4; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
}
for (i = 0; i < 4; i++)
{
this->PointIds->SetId(i,0);
}
this->Line = vtkLine::New();
this->Triangle = vtkTriangle::New();
}
//----------------------------------------------------------------------------
vtkTetra::~vtkTetra()
{
this->Triangle->Delete();
this->Line->Delete();
}
//----------------------------------------------------------------------------
int vtkTetra::EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& minDist2, double *weights)
{
double pt1[3], pt2[3], pt3[3], pt4[3];
int i;
double rhs[3], c1[3], c2[3], c3[3];
double det, p4;
subId = 0;
pcoords[0] = pcoords[1] = pcoords[2] = 0.0;
this->Points->GetPoint(1, pt1);
this->Points->GetPoint(2, pt2);
this->Points->GetPoint(3, pt3);
this->Points->GetPoint(0, pt4);
for (i=0; i<3; i++)
{
rhs[i] = x[i] - pt4[i];
c1[i] = pt1[i] - pt4[i];
c2[i] = pt2[i] - pt4[i];
c3[i] = pt3[i] - pt4[i];
}
if ( (det = vtkMath::Determinant3x3(c1,c2,c3)) == 0.0 )
{
return -1;
}
pcoords[0] = vtkMath::Determinant3x3 (rhs,c2,c3) / det;
pcoords[1] = vtkMath::Determinant3x3 (c1,rhs,c3) / det;
pcoords[2] = vtkMath::Determinant3x3 (c1,c2,rhs) / det;
p4 = 1.0 - pcoords[0] - pcoords[1] - pcoords[2];
weights[0] = p4;
weights[1] = pcoords[0];
weights[2] = pcoords[1];
weights[3] = pcoords[2];
if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 &&
pcoords[1] >= -0.001 && pcoords[1] <= 1.001 &&
pcoords[2] >= -0.001 && pcoords[2] <= 1.001 && p4 >= -0.001 && p4 <= 1.001 )
{
if (closestPoint)
{
closestPoint[0] = x[0];
closestPoint[1] = x[1];
closestPoint[2] = x[2];
minDist2 = 0.0; //inside tetra
}
return 1;
}
else
{ //could easily be sped up using parametric localization - next release
double dist2, w[3], closest[3], pc[3];
int sub;
vtkTriangle *triangle;
if (closestPoint)
{
for (minDist2=VTK_DOUBLE_MAX,i=0; i<4; i++)
{
triangle = (vtkTriangle *) this->GetFace (i);
triangle->EvaluatePosition(x,closest,sub,pc,dist2,(double *)w);
if ( dist2 < minDist2 )
{
closestPoint[0] = closest[0];
closestPoint[1] = closest[1];
closestPoint[2] = closest[2];
minDist2 = dist2;
}
}
}
return 0;
}
}
//----------------------------------------------------------------------------
void vtkTetra::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3],
double x[3], double *weights)
{
double u4;
double pt1[3], pt2[3], pt3[3], pt4[3];
int i;
this->Points->GetPoint(1, pt1);
this->Points->GetPoint(2, pt2);
this->Points->GetPoint(3, pt3);
this->Points->GetPoint(0, pt4);
u4 = 1.0 - pcoords[0] - pcoords[1] - pcoords[2];
for (i=0; i<3; i++)
{
x[i] = pt1[i]*pcoords[0] + pt2[i]*pcoords[1] + pt3[i]*pcoords[2] +
pt4[i]*u4;
}
weights[0] = u4;
weights[1] = pcoords[0];
weights[2] = pcoords[1];
weights[3] = pcoords[2];
}
//----------------------------------------------------------------------------
// Returns the set of points that are on the boundary of the tetrahedron that
// are closest parametrically to the point specified. This may include faces,
// edges, or vertices.
int vtkTetra::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
vtkIdList *pts)
{
double minPCoord = 1.0 - pcoords[0] - pcoords[1] - pcoords[2];
int i, idx=3;
for ( i=0; i < 3; i++ )
{
if ( pcoords[i] < minPCoord )
{
minPCoord = pcoords[i];
idx = i;
}
}
pts->SetNumberOfIds(3);
switch (idx) //find the face closest to the point
{
case 0:
pts->SetId(0,this->PointIds->GetId(0));
pts->SetId(1,this->PointIds->GetId(2));
pts->SetId(2,this->PointIds->GetId(3));
break;
case 1:
pts->SetId(0,this->PointIds->GetId(0));
pts->SetId(1,this->PointIds->GetId(1));
pts->SetId(2,this->PointIds->GetId(3));
break;
case 2:
pts->SetId(0,this->PointIds->GetId(0));
pts->SetId(1,this->PointIds->GetId(1));
pts->SetId(2,this->PointIds->GetId(2));
break;
case 3:
pts->SetId(0,this->PointIds->GetId(1));
pts->SetId(1,this->PointIds->GetId(2));
pts->SetId(2,this->PointIds->GetId(3));
break;
}
if ( pcoords[0] < 0.0 || pcoords[1] < 0.0 || pcoords[2] < 0.0 ||
pcoords[0] > 1.0 || pcoords[1] > 1.0 || pcoords[2] > 1.0 ||
(1.0 - pcoords[0] - pcoords[1] - pcoords[2]) < 0.0 )
{
return 0;
}
else
{
return 1;
}
}
//----------------------------------------------------------------------------
// Marching tetrahedron
//
static int edges[6][2] = { {0,1}, {1,2}, {2,0},
{0,3}, {1,3}, {2,3} };
static int faces[4][3] = { {0,1,3}, {1,2,3}, {2,0,3}, {0,2,1} };
typedef int EDGE_LIST;
typedef struct {
EDGE_LIST edges[7];
} TRIANGLE_CASES;
static TRIANGLE_CASES triCases[] = {
{{-1, -1, -1, -1, -1, -1, -1}},
{{ 0, 3, 2, -1, -1, -1, -1}},
{{ 0, 1, 4, -1, -1, -1, -1}},
{{ 3, 2, 4, 4, 2, 1, -1}},
{{ 1, 2, 5, -1, -1, -1, -1}},
{{ 3, 5, 1, 3, 1, 0, -1}},
{{ 0, 2, 5, 0, 5, 4, -1}},
{{ 3, 5, 4, -1, -1, -1, -1}},
{{ 3, 4, 5, -1, -1, -1, -1}},
{{ 0, 4, 5, 0, 5, 2, -1}},
{{ 0, 5, 3, 0, 1, 5, -1}},
{{ 5, 2, 1, -1, -1, -1, -1}},
{{ 3, 4, 1, 3, 1, 2, -1}},
{{ 0, 4, 1, -1, -1, -1, -1}},
{{ 0, 2, 3, -1, -1, -1, -1}},
{{-1, -1, -1, -1, -1, -1, -1}}
};
//----------------------------------------------------------------------------
void vtkTetra::Contour(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *lines,
vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
{
static int CASE_MASK[4] = {1,2,4,8};
TRIANGLE_CASES *triCase;
EDGE_LIST *edge;
int i, j, index, *vert, v1, v2, newCellId;
vtkIdType pts[3];
double t, x1[3], x2[3], x[3], deltaScalar;
vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells();
// Build the case table
for ( i=0, index = 0; i < 4; i++)
{
if (cellScalars->GetComponent(i,0) >= value)
{
index |= CASE_MASK[i];
}
}
triCase = triCases + index;
edge = triCase->edges;
for ( ; edge[0] > -1; edge += 3 )
{
for (i=0; i<3; i++) // insert triangle
{
vert = edges[edge[i]];
// calculate a preferred interpolation direction
deltaScalar = (cellScalars->GetComponent(vert[1],0)
- cellScalars->GetComponent(vert[0],0));
if (deltaScalar > 0)
{
v1 = vert[0]; v2 = vert[1];
}
else
{
v1 = vert[1]; v2 = vert[0];
deltaScalar = -deltaScalar;
}
// linear interpolation across edge
t = ( deltaScalar == 0.0 ? 0.0 :
(value - cellScalars->GetComponent(v1,0)) / deltaScalar );
this->Points->GetPoint(v1, x1);
this->Points->GetPoint(v2, x2);
for (j=0; j<3; j++)
{
x[j] = x1[j] + t * (x2[j] - x1[j]);
}
if ( locator->InsertUniquePoint(x, pts[i]) )
{
if ( outPd )
{
vtkIdType p1 = this->PointIds->GetId(v1);
vtkIdType p2 = this->PointIds->GetId(v2);
outPd->InterpolateEdge(inPd,pts[i],p1,p2,t);
}
}
}
// check for degenerate triangle
if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] )
{
newCellId = offset + polys->InsertNextCell(3,pts);
outCd->CopyData(inCd,cellId,newCellId);
}
}
}
//----------------------------------------------------------------------------
int *vtkTetra::GetEdgeArray(int edgeId)
{
return edges[edgeId];
}
//----------------------------------------------------------------------------
vtkCell *vtkTetra::GetEdge(int edgeId)
{
int *verts;
verts = edges[edgeId];
// load point id's
this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
// load coordinates
this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
return this->Line;
}
//----------------------------------------------------------------------------
int *vtkTetra::GetFaceArray(int faceId)
{
return faces[faceId];
}
//----------------------------------------------------------------------------
vtkCell *vtkTetra::GetFace(int faceId)
{
int *verts;
verts = faces[faceId];
// load point id's
this->Triangle->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
this->Triangle->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
this->Triangle->PointIds->SetId(2,this->PointIds->GetId(verts[2]));
// load coordinates
this->Triangle->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
this->Triangle->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
this->Triangle->Points->SetPoint(2,this->Points->GetPoint(verts[2]));
return this->Triangle;
}
//----------------------------------------------------------------------------
//
// Intersect triangle faces against line.
//
int vtkTetra::IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId)
{
int intersection=0;
double pt1[3], pt2[3], pt3[3];
double tTemp;
double pc[3], xTemp[3];
int faceNum;
t = VTK_DOUBLE_MAX;
for (faceNum=0; faceNum<4; faceNum++)
{
this->Points->GetPoint(faces[faceNum][0], pt1);
this->Points->GetPoint(faces[faceNum][1], pt2);
this->Points->GetPoint(faces[faceNum][2], pt3);
this->Triangle->Points->SetPoint(0,pt1);
this->Triangle->Points->SetPoint(1,pt2);
this->Triangle->Points->SetPoint(2,pt3);
if ( this->Triangle->IntersectWithLine(p1, p2, tol, tTemp,
xTemp, pc, subId) )
{
intersection = 1;
if ( tTemp < t )
{
t = tTemp;
x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2];
switch (faceNum)
{
case 0:
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0;
break;
case 1:
pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = 0.0;
break;
case 2:
pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = 0.0;
break;
case 3:
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = pc[2];
break;
}
}
}
}
return intersection;
}
//----------------------------------------------------------------------------
int vtkTetra::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts)
{
ptIds->Reset();
pts->Reset();
for ( int i=0; i < 4; i++ )
{
ptIds->InsertId(i,this->PointIds->GetId(i));
pts->InsertPoint(i,this->Points->GetPoint(i));
}
return 1;
}
//----------------------------------------------------------------------------
void vtkTetra::Derivatives(int vtkNotUsed(subId), double vtkNotUsed(pcoords)[3],
double *values, int dim, double *derivs)
{
double *jI[3], j0[3], j1[3], j2[3];
double functionDerivs[12], sum[3], value;
int i, j, k;
// compute inverse Jacobian and interpolation function derivatives
jI[0] = j0; jI[1] = j1; jI[2] = j2;
this->JacobianInverse(jI, functionDerivs);
// now compute derivates of values provided
for (k=0; k < dim; k++) //loop over values per vertex
{
sum[0] = sum[1] = sum[2] = 0.0;
for ( i=0; i < 4; i++) //loop over interp. function derivatives
{
value = values[dim*i + k];
sum[0] += functionDerivs[i] * value;
sum[1] += functionDerivs[4 + i] * value;
sum[2] += functionDerivs[8 + i] * value;
}
for (j=0; j < 3; j++) //loop over derivative directions
{
derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2];
}
}
}
//----------------------------------------------------------------------------
// Compute the center of the tetrahedron,
void vtkTetra::TetraCenter(double p1[3], double p2[3], double p3[3],
double p4[3], double center[3])
{
center[0] = (p1[0]+p2[0]+p3[0]+p4[0]) / 4.0;
center[1] = (p1[1]+p2[1]+p3[1]+p4[1]) / 4.0;
center[2] = (p1[2]+p2[2]+p3[2]+p4[2]) / 4.0;
}
//----------------------------------------------------------------------------
double vtkTetra::ComputeVolume(double p1[3], double p2[3], double p3[3],
double p4[3])
{
return (vtkMath::Determinant3x3(p2[0]-p1[0], p3[0]-p1[0], p4[0]-p1[0],
p2[1]-p1[1], p3[1]-p1[1], p4[1]-p1[1],
p2[2]-p1[2], p3[2]-p1[2], p4[2]-p1[2])/6.0);
}
//----------------------------------------------------------------------------
// Compute the circumcenter (center[3]) and radius squared (method
// return value) of a tetrahedron defined by the four points x1, x2,
// x3, and x4.
double vtkTetra::Circumsphere(double x1[3], double x2[3], double x3[3],
double x4[3], double center[3])
{
double n12[3], n13[3], n14[3], x12[3], x13[3], x14[3];
double *A[3], rhs[3], sum, diff;
int i;
// calculate normals and intersection points of bisecting planes.
//
for (i=0; i<3; i++)
{
n12[i] = x2[i] - x1[i];
n13[i] = x3[i] - x1[i];
n14[i] = x4[i] - x1[i];
x12[i] = (x2[i] + x1[i]) / 2.0;
x13[i] = (x3[i] + x1[i]) / 2.0;
x14[i] = (x4[i] + x1[i]) / 2.0;
}
// Compute solutions to the intersection of two bisecting lines
// (3-eqns. in 3-unknowns).
//
// form system matrices
//
A[0] = n12;
A[1] = n13;
A[2] = n14;
rhs[0] = vtkMath::Dot(n12,x12);
rhs[1] = vtkMath::Dot(n13,x13);
rhs[2] = vtkMath::Dot(n14,x14);
// Solve system of equations
//
if ( vtkMath::SolveLinearSystem(A,rhs,3) == 0 )
{
center[0] = center[1] = center[2] = 0.0;
return VTK_DOUBLE_MAX;
}
else
{
for (i=0; i<3; i++)
{
center[i] = rhs[i];
}
}
//determine average value of radius squared
for (sum=0, i=0; i<3; i++)
{
diff = x1[i] - rhs[i];
sum += diff*diff;
diff = x2[i] - rhs[i];
sum += diff*diff;
diff = x3[i] - rhs[i];
sum += diff*diff;
diff = x4[i] - rhs[i];
sum += diff*diff;
}
if ( (sum /= 4.0) > VTK_DOUBLE_MAX )
{
return VTK_DOUBLE_MAX;
}
else
{
return sum;
}
}
//----------------------------------------------------------------------------
// Compute the incenter (center[3]) and radius (method return value) of
// a tetrahedron defined by the four points p1, p2, p3, and p4.
double vtkTetra::Insphere(double p1[3], double p2[3], double p3[3],
double p4[3], double center[3])
{
double u[3], v[3], w[3];
double p[3], q[3], r[3];
double O1[3],O2[3];
double y[3], s[3], t;
u[0] = p2[0]-p1[0];
u[1] = p2[1]-p1[1];
u[2] = p2[2]-p1[2];
v[0] = p3[0]-p1[0];
v[1] = p3[1]-p1[1];
v[2] = p3[2]-p1[2];
w[0] = p4[0]-p1[0];
w[1] = p4[1]-p1[1];
w[2] = p4[2]-p1[2];
vtkMath::Cross(u,v,p);
vtkMath::Normalize(p);
vtkMath::Cross(v,w,q);
vtkMath::Normalize(q);
vtkMath::Cross(w,u,r);
vtkMath::Normalize(r);
O1[0] = p[0]-q[0];
O1[1] = p[1]-q[1];
O1[2] = p[2]-q[2];
O2[0] = q[0]-r[0];
O2[1] = q[1]-r[1];
O2[2] = q[2]-r[2];
vtkMath::Cross(O1,O2,y);
O1[0] = u[0]-w[0];
O1[1] = u[1]-w[1];
O1[2] = u[2]-w[2];
O2[0] = v[0]-w[0];
O2[1] = v[1]-w[1];
O2[2] = v[2]-w[2];
vtkMath::Cross(O1,O2,s);
vtkMath::Normalize(s);
s[0] = -1 * s[0];
s[1] = -1 * s[1];
s[2] = -1 * s[2];
O1[0] = s[0]-p[0];
O1[1] = s[1]-p[1];
O1[2] = s[2]-p[2];
t = vtkMath::Dot(w,s)/vtkMath::Dot(y,O1);
center[0] = p1[0] + (t * y[0]);
center[1] = p1[1] + (t * y[1]);
center[2] = p1[2] + (t * y[2]);
return (fabs(t* vtkMath::Dot(y,p)));
}
//----------------------------------------------------------------------------
// Given a 3D point x[3], determine the barycentric coordinates of the point.
// Barycentric coordinates are a natural coordinate system for simplices that
// express a position as a linear combination of the vertices. For a
// tetrahedron, there are four barycentric coordinates (because there are
// four vertices), and the sum of the coordinates must equal 1. If a
// point x is inside a simplex, then all four coordinates will be strictly
// positive. If three coordinates are zero (so the fourth =1), then the
// point x is on a vertex. If two coordinates are zero, the point x is on an
// edge (and so on). In this method, you must specify the vertex coordinates
// x1->x4. Returns 0 if tetrahedron is degenerate.
int vtkTetra::BarycentricCoords(double x[3], double x1[3], double x2[3],
double x3[3], double x4[3], double bcoords[4])
{
double *A[4], p[4], a1[4], a2[4], a3[4], a4[4];
int i;
// Homogenize the variables; load into arrays.
//
a1[0] = x1[0]; a1[1] = x2[0]; a1[2] = x3[0]; a1[3] = x4[0];
a2[0] = x1[1]; a2[1] = x2[1]; a2[2] = x3[1]; a2[3] = x4[1];
a3[0] = x1[2]; a3[1] = x2[2]; a3[2] = x3[2]; a3[3] = x4[2];
a4[0] = 1.0; a4[1] = 1.0; a4[2] = 1.0; a4[3] = 1.0;
p[0] = x[0]; p[1] = x[1]; p[2] = x[2]; p[3] = 1.0;
// Now solve system of equations for barycentric coordinates
//
A[0] = a1;
A[1] = a2;
A[2] = a3;
A[3] = a4;
if ( vtkMath::SolveLinearSystem(A,p,4) )
{
for (i=0; i<4; i++)
{
bcoords[i] = p[i];
}
return 1;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
//
// Compute iso-parametric interpolation functions
//
void vtkTetra::InterpolationFunctions(double pcoords[3], double sf[4])
{
sf[0] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2];
sf[1] = pcoords[0];
sf[2] = pcoords[1];
sf[3] = pcoords[2];
}
//----------------------------------------------------------------------------
void vtkTetra::InterpolationDerivs(double derivs[12])
{
// r-derivatives
derivs[0] = -1.0;
derivs[1] = 1.0;
derivs[2] = 0.0;
derivs[3] = 0.0;
// s-derivatives
derivs[4] = -1.0;
derivs[5] = 0.0;
derivs[6] = 1.0;
derivs[7] = 0.0;
// t-derivatives
derivs[8] = -1.0;
derivs[9] = 0.0;
derivs[10] = 0.0;
derivs[11] = 1.0;
}
//----------------------------------------------------------------------------
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives. Returns 0 if no inverse exists.
int vtkTetra::JacobianInverse(double **inverse, double derivs[12])
{
int i, j;
double *m[3], m0[3], m1[3], m2[3];
double x[3];
// compute interpolation function derivatives
this->InterpolationDerivs(derivs);
// create Jacobian matrix
m[0] = m0; m[1] = m1; m[2] = m2;
for (i=0; i < 3; i++) //initialize matrix
{
m0[i] = m1[i] = m2[i] = 0.0;
}
for ( j=0; j < 4; j++ )
{
this->Points->GetPoint(j, x);
for ( i=0; i < 3; i++ )
{
m0[i] += x[i] * derivs[j];
m1[i] += x[i] * derivs[4 + j];
m2[i] += x[i] * derivs[8 + j];
}
}
// now find the inverse
if ( vtkMath::InvertMatrix(m,inverse,3) == 0 )
{
#define VTK_MAX_WARNS 3
static int numWarns=0;
if ( numWarns++ < VTK_MAX_WARNS )
{
vtkErrorMacro(<<"Jacobian inverse not found");
vtkErrorMacro(<<"Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2]
<< m[1][0] << " " << m[1][1] << " " << m[1][2]
<< m[2][0] << " " << m[2][1] << " " << m[2][2] );
return 0;
}
}
return 1;
}
//----------------------------------------------------------------------------
void vtkTetra::GetEdgePoints(int edgeId, int* &pts)
{
pts = this->GetEdgeArray(edgeId);
}
//----------------------------------------------------------------------------
void vtkTetra::GetFacePoints(int faceId, int* &pts)
{
pts = this->GetFaceArray(faceId);
}
//----------------------------------------------------------------------------
// The clip table produces either a single tetrahedron or a single wedge as
// output. The format of the case table is #pts, ptids. Points >= 100 are
// existing vertices; otherwise the number is an edge number requiring that
// an intersection is produced.
// support tetra clipping
typedef int TETRA_EDGE_LIST;
typedef struct {
TETRA_EDGE_LIST edges[7];
} TETRA_CASES;
static TETRA_CASES tetraCases[] = {
{{ 0, 0, 0, 0, 0, 0, 0}}, // 0
{{ 4, 0, 3, 2, 100, 0, 0}}, // 1
{{ 4, 0, 1, 4, 101, 0, 0}}, // 2
{{ 6, 101, 1, 4, 100, 2, 3}}, // 3
{{ 4, 1, 2, 5, 102, 0, 0}}, // 4
{{ 6, 102, 5, 1, 100, 3, 0}}, // 5
{{ 6, 102, 2, 5, 101, 0, 4}}, // 6
{{ 6, 3, 4, 5, 100, 101, 102}}, // 7
{{ 4, 3, 4, 5, 103, 0, 0}}, // 8
{{ 6, 103, 4, 5, 100, 0, 2}}, // 9
{{ 6, 103, 5, 3, 101, 1, 0}}, // 10
{{ 6, 100, 101, 103, 2, 1, 5}}, // 11
{{ 6, 2, 102, 1, 3, 103, 4}}, // 12
{{ 6, 0, 1, 4, 100, 102, 103}}, // 13
{{ 6, 0, 3, 2, 101, 103, 102}}, // 14
{{ 4, 100, 101, 102, 103, 0, 0}} // 15
};
//----------------------------------------------------------------------------
// Clip this tetra using scalar value provided. Like contouring, except that
// it cuts the tetra to produce other 3D cells (note that this method will
// produce a single tetrahedra or a single wedge). The table has been
// carefully designed to insure that face neighbors--after clipping--are
// remain compatible.
void vtkTetra::Clip(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *tets,
vtkPointData *inPD, vtkPointData *outPD,
vtkCellData *inCD, vtkIdType cellId, vtkCellData *outCD,
int insideOut)
{
static int CASE_MASK[4] = {1,2,4,8};
TETRA_CASES *tetraCase;
TETRA_EDGE_LIST *edge;
int i, j, index, *vert, newCellId;
vtkIdType pts[6];
int vertexId;
double t, x1[3], x2[3], x[3];
// Build the case table
if ( insideOut )
{
for ( i=0, index=0; i < 4; i++)
{
if (cellScalars->GetComponent(i,0) <= value)
{
index |= CASE_MASK[i];
}
}
}
else
{
for ( i=0, index=0; i < 4; i++)
{
if (cellScalars->GetComponent(i,0) > value)
{
index |= CASE_MASK[i];
}
}
}
// Select the case based on the index and get the list of edges for this case
tetraCase = tetraCases + index;
edge = tetraCase->edges;
// produce the clipped cell
for (i=1; i<=edge[0]; i++) // insert tetra
{
// vertex exists, and need not be interpolated
if (edge[i] >= 100)
{
vertexId = edge[i] - 100;
this->Points->GetPoint(vertexId, x);
if ( locator->InsertUniquePoint(x, pts[i-1]) )
{
outPD->CopyData(inPD,this->PointIds->GetId(vertexId),pts[i-1]);
}
}
else //new vertex, interpolate
{
int v1, v2;
vert = edges[edge[i]];
// calculate a preferred interpolation direction
double deltaScalar = (cellScalars->GetComponent(vert[1],0)
- cellScalars->GetComponent(vert[0],0));
if (deltaScalar > 0)
{
v1 = vert[0]; v2 = vert[1];
}
else
{
v1 = vert[1]; v2 = vert[0];
deltaScalar = -deltaScalar;
}
// linear interpolation across edge
t = ( deltaScalar == 0.0 ? 0.0 :
(value - cellScalars->GetComponent(v1,0)) / deltaScalar );
this->Points->GetPoint(v1, x1);
this->Points->GetPoint(v2, x2);
for (j=0; j<3; j++)
{
x[j] = x1[j] + t * (x2[j] - x1[j]);
}
if ( locator->InsertUniquePoint(x, pts[i-1]) )
{
vtkIdType p1 = this->PointIds->GetId(v1);
vtkIdType p2 = this->PointIds->GetId(v2);
outPD->InterpolateEdge(inPD,pts[i-1],p1,p2,t);
}
}
}
int allDifferent, numUnique=1;
for (i=0; i<(edge[0]-1); i++)
{
for (allDifferent=1, j=i+1; j<edge[0] && allDifferent; j++)
{
if (pts[i] == pts[j]) allDifferent = 0;
}
if (allDifferent) numUnique++;
}
if ( edge[0] == 4 && numUnique == 4 ) // check for degenerate tetra
{
newCellId = tets->InsertNextCell(edge[0],pts);
outCD->CopyData(inCD,cellId,newCellId);
}
else if ( edge[0] == 6 && numUnique > 3 ) // check for degenerate wedge
{
newCellId = tets->InsertNextCell(edge[0],pts);
outCD->CopyData(inCD,cellId,newCellId);
}
}
//----------------------------------------------------------------------------
static double vtkTetraCellPCoords[12] = {0.0,0.0,0.0, 1.0,0.0,0.0,
0.0,1.0,0.0, 0.0,0.0,1.0};
double *vtkTetra::GetParametricCoords()
{
return vtkTetraCellPCoords;
}
//----------------------------------------------------------------------------
double vtkTetra::GetParametricDistance(double pcoords[3])
{
int i;
double pDist, pDistMax=0.0;
double pc[4];
pc[0] = pcoords[0];
pc[1] = pcoords[1];
pc[2] = pcoords[2];
pc[3] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2];
for (i=0; i<4; i++)
{
if ( pc[i] < 0.0 )
{
pDist = -pc[i];
}
else if ( pc[i] > 1.0 )
{
pDist = pc[i] - 1.0;
}
else //inside the cell in the parametric direction
{
pDist = 0.0;
}
if ( pDist > pDistMax )
{
pDistMax = pDist;
}
}
return pDistMax;
}
//----------------------------------------------------------------------------
void vtkTetra::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Line:\n";
this->Line->PrintSelf(os,indent.GetNextIndent());
os << indent << "Triangle:\n";
this->Triangle->PrintSelf(os,indent.GetNextIndent());
}