You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
778 lines
24 KiB
778 lines
24 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkWedge.cxx,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
#include "vtkWedge.h"
|
|
|
|
#include "vtkCellArray.h"
|
|
#include "vtkCellData.h"
|
|
#include "vtkLine.h"
|
|
#include "vtkMath.h"
|
|
#include "vtkObjectFactory.h"
|
|
#include "vtkPointData.h"
|
|
#include "vtkPointLocator.h"
|
|
#include "vtkQuad.h"
|
|
#include "vtkTriangle.h"
|
|
#include "vtkUnstructuredGrid.h"
|
|
|
|
vtkCxxRevisionMacro(vtkWedge, "$Revision: 1.4 $");
|
|
vtkStandardNewMacro(vtkWedge);
|
|
|
|
static const double VTK_DIVERGED = 1.e6;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Construct the wedge with six points.
|
|
vtkWedge::vtkWedge()
|
|
{
|
|
this->Points->SetNumberOfPoints(6);
|
|
this->PointIds->SetNumberOfIds(6);
|
|
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
|
|
this->PointIds->SetId(i,0);
|
|
}
|
|
|
|
this->Line = vtkLine::New();
|
|
this->Triangle = vtkTriangle::New();
|
|
this->Quad = vtkQuad::New();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
vtkWedge::~vtkWedge()
|
|
{
|
|
this->Line->Delete();
|
|
this->Triangle->Delete();
|
|
this->Quad->Delete();
|
|
}
|
|
|
|
|
|
static const int VTK_WEDGE_MAX_ITERATION=10;
|
|
static const double VTK_WEDGE_CONVERGED=1.e-03;
|
|
|
|
//----------------------------------------------------------------------------
|
|
int vtkWedge::EvaluatePosition(double x[3], double* closestPoint,
|
|
int& subId, double pcoords[3],
|
|
double& dist2, double *weights)
|
|
{
|
|
int iteration, converged;
|
|
double params[3];
|
|
double fcol[3], rcol[3], scol[3], tcol[3];
|
|
int i, j;
|
|
double d, pt[3];
|
|
double derivs[18];
|
|
|
|
// set initial position for Newton's method
|
|
subId = 0;
|
|
pcoords[0] = pcoords[1] = pcoords[2] = 0.5;
|
|
params[0] = params[1] = params[2] = 0.5;
|
|
|
|
// enter iteration loop
|
|
for (iteration=converged=0; !converged && (iteration < VTK_WEDGE_MAX_ITERATION);
|
|
iteration++)
|
|
{
|
|
// calculate element interpolation functions and derivatives
|
|
this->InterpolationFunctions(pcoords, weights);
|
|
this->InterpolationDerivs(pcoords, derivs);
|
|
|
|
// calculate newton functions
|
|
for (i=0; i<3; i++)
|
|
{
|
|
fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0;
|
|
}
|
|
for (i=0; i<6; i++)
|
|
{
|
|
this->Points->GetPoint(i, pt);
|
|
for (j=0; j<3; j++)
|
|
{
|
|
fcol[j] += pt[j] * weights[i];
|
|
rcol[j] += pt[j] * derivs[i];
|
|
scol[j] += pt[j] * derivs[i+6];
|
|
tcol[j] += pt[j] * derivs[i+12];
|
|
}
|
|
}
|
|
|
|
for (i=0; i<3; i++)
|
|
{
|
|
fcol[i] -= x[i];
|
|
}
|
|
|
|
// compute determinants and generate improvements
|
|
d=vtkMath::Determinant3x3(rcol,scol,tcol);
|
|
if ( fabs(d) < 1.e-20)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d;
|
|
pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d;
|
|
pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d;
|
|
|
|
// check for convergence
|
|
if ( ((fabs(pcoords[0]-params[0])) < VTK_WEDGE_CONVERGED) &&
|
|
((fabs(pcoords[1]-params[1])) < VTK_WEDGE_CONVERGED) &&
|
|
((fabs(pcoords[2]-params[2])) < VTK_WEDGE_CONVERGED) )
|
|
{
|
|
converged = 1;
|
|
}
|
|
// Test for bad divergence (S.Hirschberg 11.12.2001)
|
|
else if ((fabs(pcoords[0]) > VTK_DIVERGED) ||
|
|
(fabs(pcoords[1]) > VTK_DIVERGED) ||
|
|
(fabs(pcoords[2]) > VTK_DIVERGED))
|
|
{
|
|
return -1;
|
|
}
|
|
// if not converged, repeat
|
|
else
|
|
{
|
|
params[0] = pcoords[0];
|
|
params[1] = pcoords[1];
|
|
params[2] = pcoords[2];
|
|
}
|
|
}
|
|
|
|
// if not converged, set the parametric coordinates to arbitrary values
|
|
// outside of element
|
|
if ( !converged )
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
this->InterpolationFunctions(pcoords, weights);
|
|
|
|
if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 &&
|
|
pcoords[1] >= -0.001 && pcoords[1] <= 1.001 &&
|
|
pcoords[2] >= -0.001 && pcoords[2] <= 1.001 )
|
|
{
|
|
if (closestPoint)
|
|
{
|
|
closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2];
|
|
dist2 = 0.0; //inside wedge
|
|
}
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
double pc[3], w[6];
|
|
if (closestPoint)
|
|
{
|
|
for (i=0; i<3; i++) //only approximate, not really true for warped hexa
|
|
{
|
|
if (pcoords[i] < 0.0)
|
|
{
|
|
pc[i] = 0.0;
|
|
}
|
|
else if (pcoords[i] > 1.0)
|
|
{
|
|
pc[i] = 1.0;
|
|
}
|
|
else
|
|
{
|
|
pc[i] = pcoords[i];
|
|
}
|
|
}
|
|
this->EvaluateLocation(subId, pc, closestPoint, (double *)w);
|
|
dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3],
|
|
double x[3], double *weights)
|
|
{
|
|
int i, j;
|
|
double pt[3];
|
|
|
|
this->InterpolationFunctions(pcoords, weights);
|
|
|
|
x[0] = x[1] = x[2] = 0.0;
|
|
for (i=0; i<6; i++)
|
|
{
|
|
this->Points->GetPoint(i, pt);
|
|
for (j=0; j<3; j++)
|
|
{
|
|
x[j] += pt[j] * weights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Returns the closest face to the point specified. Closeness is measured
|
|
// parametrically.
|
|
int vtkWedge::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
|
|
vtkIdList *pts)
|
|
{
|
|
int i;
|
|
|
|
// define 9 planes that separate regions
|
|
static double normals[9][3] = {
|
|
{0.0,0.83205,-0.5547}, {-0.639602,-0.639602,-0.426401}, {0.83205,0.0,-0.5547},
|
|
{0.0,0.83205,0.5547}, {-0.639602,-0.639602,0.426401}, {0.83205,0.0,0.5547},
|
|
{-0.707107,0.707107,0.0}, {0.447214,0.894427,0.0}, {0.894427,0.447214,0.0} };
|
|
static double point[3] = {0.333333,0.333333,0.5};
|
|
double vals[9];
|
|
|
|
// evaluate 9 plane equations
|
|
for (i=0; i<9; i++)
|
|
{
|
|
vals[i] = normals[i][0]*(pcoords[0]-point[0]) +
|
|
normals[i][1]*(pcoords[1]-point[1]) + normals[i][2]*(pcoords[2]-point[2]);
|
|
}
|
|
|
|
// compare against nine planes in parametric space that divide element
|
|
// into five pieces (each corresponding to a face).
|
|
if ( vals[0] >= 0.0 && vals[1] >= 0.0 && vals[2] >= 0.0 )
|
|
{
|
|
pts->SetNumberOfIds(3); //triangle face
|
|
pts->SetId(0,this->PointIds->GetId(0));
|
|
pts->SetId(1,this->PointIds->GetId(1));
|
|
pts->SetId(2,this->PointIds->GetId(2));
|
|
}
|
|
|
|
else if ( vals[3] >= 0.0 && vals[4] >= 0.0 && vals[5] >= 0.0 )
|
|
{
|
|
pts->SetNumberOfIds(3); //triangle face
|
|
pts->SetId(0,this->PointIds->GetId(3));
|
|
pts->SetId(1,this->PointIds->GetId(4));
|
|
pts->SetId(2,this->PointIds->GetId(5));
|
|
}
|
|
|
|
else if ( vals[0] <= 0.0 && vals[3] <= 0.0 &&
|
|
vals[6] <= 0.0 && vals[7] <= 0.0 )
|
|
{
|
|
pts->SetNumberOfIds(4); //quad face
|
|
pts->SetId(0,this->PointIds->GetId(0));
|
|
pts->SetId(1,this->PointIds->GetId(1));
|
|
pts->SetId(2,this->PointIds->GetId(4));
|
|
pts->SetId(3,this->PointIds->GetId(3));
|
|
}
|
|
|
|
else if ( vals[1] <= 0.0 && vals[4] <= 0.0 &&
|
|
vals[7] >= 0.0 && vals[8] >= 0.0 )
|
|
{
|
|
pts->SetNumberOfIds(4); //quad face
|
|
pts->SetId(0,this->PointIds->GetId(1));
|
|
pts->SetId(1,this->PointIds->GetId(2));
|
|
pts->SetId(2,this->PointIds->GetId(5));
|
|
pts->SetId(3,this->PointIds->GetId(4));
|
|
}
|
|
|
|
else //vals[2] <= 0.0 && vals[5] <= 0.0 && vals[8] <= 0.0 && vals[6] >= 0.0
|
|
{
|
|
pts->SetNumberOfIds(4); //quad face
|
|
pts->SetId(0,this->PointIds->GetId(2));
|
|
pts->SetId(1,this->PointIds->GetId(0));
|
|
pts->SetId(2,this->PointIds->GetId(3));
|
|
pts->SetId(3,this->PointIds->GetId(5));
|
|
}
|
|
|
|
if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 ||
|
|
pcoords[1] < 0.0 || pcoords[1] > 1.0 ||
|
|
pcoords[2] < 0.0 || pcoords[2] > 1.0 )
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Marching (convex) wedge
|
|
//
|
|
static int edges[9][2] = { {0,1}, {1,2}, {2,0},
|
|
{3,4}, {4,5}, {5,3},
|
|
{0,3}, {1,4}, {2,5} };
|
|
static int faces[5][4] = { {0,1,2,-1}, {3,5,4,-1},
|
|
{0,3,4,1}, {1,4,5,2}, {2,5,3,0} };
|
|
|
|
typedef int EDGE_LIST;
|
|
typedef struct {
|
|
EDGE_LIST edges[13];
|
|
} TRIANGLE_CASES;
|
|
|
|
static TRIANGLE_CASES triCases[] = {
|
|
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //0
|
|
{{ 0, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //1
|
|
{{ 0, 1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //2
|
|
{{ 6, 1, 7, 6, 2, 1, -1, -1, -1, -1, -1, -1, -1}}, //3
|
|
{{ 1, 2, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //4
|
|
{{ 6, 1, 0, 6, 8, 1, -1, -1, -1, -1, -1, -1, -1}}, //5
|
|
{{ 0, 2, 8, 7, 0, 8, -1, -1, -1, -1, -1, -1, -1}}, //6
|
|
{{ 7, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //7
|
|
{{ 3, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //8
|
|
{{ 3, 5, 0, 5, 2, 0, -1, -1, -1, -1, -1, -1, -1}}, //9
|
|
{{ 0, 1, 7, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1}}, //10
|
|
{{ 1, 7, 3, 1, 3, 5, 1, 5, 2, -1, -1, -1, -1}}, //11
|
|
{{ 2, 8, 1, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1}}, //12
|
|
{{ 0, 3, 1, 1, 3, 5, 1, 5, 8, -1, -1, -1, -1}}, //13
|
|
{{ 6, 3, 5, 0, 8, 7, 0, 2, 8, -1, -1, -1, -1}}, //14
|
|
{{ 7, 3, 5, 7, 5, 8, -1, -1, -1, -1, -1, -1, -1}}, //15
|
|
{{ 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //16
|
|
{{ 7, 4, 3, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}}, //17
|
|
{{ 0, 1, 3, 1, 4, 3, -1, -1, -1, -1, -1, -1, -1}}, //18
|
|
{{ 1, 4, 3, 1, 3, 6, 1, 6, 2, -1, -1, -1, -1}}, //19
|
|
{{ 7, 4, 3, 2, 8, 1, -1, -1, -1, -1, -1, -1, -1}}, //20
|
|
{{ 7, 4, 3, 6, 1, 0, 6, 8, 1, -1, -1, -1, -1}}, //21
|
|
{{ 0, 4, 3, 0, 8, 4, 0, 2, 8, -1, -1, -1, -1}}, //22
|
|
{{ 6, 8, 3, 3, 8, 4, -1, -1, -1, -1, -1, -1, -1}}, //23
|
|
{{ 6, 7, 4, 6, 4, 5, -1, -1, -1, -1, -1, -1, -1}}, //24
|
|
{{ 0, 7, 5, 7, 4, 5, 2, 0, 5, -1, -1, -1, -1}}, //25
|
|
{{ 1, 6, 0, 1, 5, 6, 1, 4, 5, -1, -1, -1, -1}}, //26
|
|
{{ 2, 1, 5, 5, 1, 4, -1, -1, -1, -1, -1, -1, -1}}, //27
|
|
{{ 2, 8, 1, 6, 7, 5, 7, 4, 5, -1, -1, -1, -1}}, //28
|
|
{{ 0, 7, 5, 7, 4, 5, 0, 5, 1, 1, 5, 8, -1}}, //29
|
|
{{ 0, 2, 8, 0, 8, 4, 0, 4, 5, 0, 5, 6, -1}}, //30
|
|
{{ 8, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //31
|
|
{{ 4, 8, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //32
|
|
{{ 4, 8, 5, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}}, //33
|
|
{{ 4, 8, 5, 0, 1, 7, -1, -1, -1, -1, -1, -1, -1}}, //34
|
|
{{ 4, 8, 5, 6, 1, 7, 6, 2, 1, -1, -1, -1, -1}}, //35
|
|
{{ 1, 5, 4, 2, 5, 1, -1, -1, -1, -1, -1, -1, -1}}, //36
|
|
{{ 1, 5, 4, 1, 6, 5, 1, 0, 6, -1, -1, -1, -1}}, //37
|
|
{{ 5, 4, 7, 5, 7, 0, 5, 0, 2, -1, -1, -1, -1}}, //38
|
|
{{ 6, 4, 7, 6, 5, 4, -1, -1, -1, -1, -1, -1, -1}}, //39
|
|
{{ 6, 3, 8, 3, 4, 8, -1, -1, -1, -1, -1, -1, -1}}, //40
|
|
{{ 0, 3, 4, 0, 4, 8, 0, 8, 2, -1, -1, -1, -1}}, //41
|
|
{{ 7, 0, 1, 6, 3, 4, 6, 4, 8, -1, -1, -1, -1}}, //42
|
|
{{ 1, 7, 3, 1, 3, 2, 2, 3, 8, 8, 3, 4, -1}}, //43
|
|
{{ 2, 6, 1, 6, 3, 1, 3, 4, 1, -1, -1, -1, -1}}, //44
|
|
{{ 0, 3, 1, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1}}, //45
|
|
{{ 7, 0, 4, 4, 0, 2, 4, 2, 3, 3, 2, 6, -1}}, //46
|
|
{{ 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //47
|
|
{{ 7, 8, 5, 7, 5, 3, -1, -1, -1, -1, -1, -1, -1}}, //48
|
|
{{ 0, 6, 2, 7, 8, 5, 7, 5, 3, -1, -1, -1, -1}}, //49
|
|
{{ 0, 1, 3, 1, 5, 3, 1, 8, 5, -1, -1, -1, -1}}, //50
|
|
{{ 2, 1, 6, 6, 1, 3, 5, 1, 8, 3, 1, 5, -1}}, //51
|
|
{{ 1, 3, 7, 1, 5, 3, 1, 2, 5, -1, -1, -1, -1}}, //52
|
|
{{ 1, 0, 6, 1, 6, 5, 1, 5, 7, 7, 5, 3, -1}}, //53
|
|
{{ 0, 2, 5, 0, 5, 3, -1, -1, -1, -1, -1, -1, -1}}, //54
|
|
{{ 3, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //55
|
|
{{ 7, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //56
|
|
{{ 0, 7, 8, 0, 8, 2, -1, -1, -1, -1, -1, -1, -1}}, //57
|
|
{{ 0, 1, 6, 1, 8, 6, -1, -1, -1, -1, -1, -1, -1}}, //58
|
|
{{ 2, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //59
|
|
{{ 6, 7, 1, 6, 1, 2, -1, -1, -1, -1, -1, -1, -1}}, //60
|
|
{{ 0, 7, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //61
|
|
{{ 0, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //62
|
|
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}} //63
|
|
};
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::Contour(double value, vtkDataArray *cellScalars,
|
|
vtkPointLocator *locator,
|
|
vtkCellArray *verts,
|
|
vtkCellArray *lines,
|
|
vtkCellArray *polys,
|
|
vtkPointData *inPd, vtkPointData *outPd,
|
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
|
|
{
|
|
static int CASE_MASK[6] = {1,2,4,8,16,32};
|
|
TRIANGLE_CASES *triCase;
|
|
EDGE_LIST *edge;
|
|
int i, j, index, *vert, v1, v2, newCellId;
|
|
vtkIdType pts[3];
|
|
double t, x1[3], x2[3], x[3], deltaScalar;
|
|
vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells();
|
|
|
|
// Build the case table
|
|
for ( i=0, index = 0; i < 6; i++)
|
|
{
|
|
if (cellScalars->GetComponent(i,0) >= value)
|
|
{
|
|
index |= CASE_MASK[i];
|
|
}
|
|
}
|
|
|
|
triCase = triCases + index;
|
|
edge = triCase->edges;
|
|
|
|
for ( ; edge[0] > -1; edge += 3 )
|
|
{
|
|
for (i=0; i<3; i++) // insert triangle
|
|
{
|
|
vert = edges[edge[i]];
|
|
|
|
// calculate a preferred interpolation direction
|
|
deltaScalar = (cellScalars->GetComponent(vert[1],0)
|
|
- cellScalars->GetComponent(vert[0],0));
|
|
if (deltaScalar > 0)
|
|
{
|
|
v1 = vert[0]; v2 = vert[1];
|
|
}
|
|
else
|
|
{
|
|
v1 = vert[1]; v2 = vert[0];
|
|
deltaScalar = -deltaScalar;
|
|
}
|
|
|
|
// linear interpolation
|
|
t = ( deltaScalar == 0.0 ? 0.0 :
|
|
(value - cellScalars->GetComponent(v1,0)) / deltaScalar );
|
|
|
|
this->Points->GetPoint(v1, x1);
|
|
this->Points->GetPoint(v2, x2);
|
|
|
|
for (j=0; j<3; j++)
|
|
{
|
|
x[j] = x1[j] + t * (x2[j] - x1[j]);
|
|
}
|
|
if ( locator->InsertUniquePoint(x, pts[i]) )
|
|
{
|
|
if ( outPd )
|
|
{
|
|
vtkIdType p1 = this->PointIds->GetId(v1);
|
|
vtkIdType p2 = this->PointIds->GetId(v2);
|
|
outPd->InterpolateEdge(inPd,pts[i],p1,p2,t);
|
|
}
|
|
}
|
|
}
|
|
// check for degenerate triangle
|
|
if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] )
|
|
{
|
|
newCellId = offset + polys->InsertNextCell(3,pts);
|
|
outCd->CopyData(inCd,cellId,newCellId);
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int *vtkWedge::GetEdgeArray(int edgeId)
|
|
{
|
|
return edges[edgeId];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
vtkCell *vtkWedge::GetEdge(int edgeId)
|
|
{
|
|
int *verts;
|
|
|
|
verts = edges[edgeId];
|
|
|
|
// load point id's
|
|
this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
|
|
this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
|
|
|
|
// load coordinates
|
|
this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
|
|
this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
|
|
|
|
return this->Line;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int *vtkWedge::GetFaceArray(int faceId)
|
|
{
|
|
return faces[faceId];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
vtkCell *vtkWedge::GetFace(int faceId)
|
|
{
|
|
int *verts = faces[faceId];
|
|
|
|
if ( verts[3] != -1 ) // quad cell
|
|
{
|
|
// load point id's
|
|
this->Quad->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
|
|
this->Quad->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
|
|
this->Quad->PointIds->SetId(2,this->PointIds->GetId(verts[2]));
|
|
this->Quad->PointIds->SetId(3,this->PointIds->GetId(verts[3]));
|
|
|
|
// load coordinates
|
|
this->Quad->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
|
|
this->Quad->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
|
|
this->Quad->Points->SetPoint(2,this->Points->GetPoint(verts[2]));
|
|
this->Quad->Points->SetPoint(3,this->Points->GetPoint(verts[3]));
|
|
|
|
return this->Quad;
|
|
}
|
|
else
|
|
{
|
|
// load point id's
|
|
this->Triangle->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
|
|
this->Triangle->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
|
|
this->Triangle->PointIds->SetId(2,this->PointIds->GetId(verts[2]));
|
|
|
|
// load coordinates
|
|
this->Triangle->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
|
|
this->Triangle->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
|
|
this->Triangle->Points->SetPoint(2,this->Points->GetPoint(verts[2]));
|
|
|
|
return this->Triangle;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Intersect faces against line.
|
|
//
|
|
int vtkWedge::IntersectWithLine(double p1[3], double p2[3],
|
|
double tol, double& t,
|
|
double x[3], double pcoords[3], int& subId)
|
|
{
|
|
int intersection=0;
|
|
double pt1[3], pt2[3], pt3[3], pt4[3];
|
|
double tTemp;
|
|
double pc[3], xTemp[3];
|
|
int faceNum;
|
|
|
|
t = VTK_DOUBLE_MAX;
|
|
|
|
//first intersect the triangle faces
|
|
for (faceNum=0; faceNum<2; faceNum++)
|
|
{
|
|
this->Points->GetPoint(faces[faceNum][0], pt1);
|
|
this->Points->GetPoint(faces[faceNum][1], pt2);
|
|
this->Points->GetPoint(faces[faceNum][2], pt3);
|
|
|
|
this->Triangle->Points->SetPoint(0,pt1);
|
|
this->Triangle->Points->SetPoint(1,pt2);
|
|
this->Triangle->Points->SetPoint(2,pt3);
|
|
|
|
if ( this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp,
|
|
pc, subId) )
|
|
{
|
|
intersection = 1;
|
|
if ( tTemp < t )
|
|
{
|
|
t = tTemp;
|
|
x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2];
|
|
switch (faceNum)
|
|
{
|
|
case 0:
|
|
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0;
|
|
break;
|
|
|
|
case 1:
|
|
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//now intersect the quad faces
|
|
for (faceNum=2; faceNum<5; faceNum++)
|
|
{
|
|
this->Points->GetPoint(faces[faceNum][0], pt1);
|
|
this->Points->GetPoint(faces[faceNum][1], pt2);
|
|
this->Points->GetPoint(faces[faceNum][2], pt3);
|
|
this->Points->GetPoint(faces[faceNum][3], pt4);
|
|
|
|
this->Quad->Points->SetPoint(0,pt1);
|
|
this->Quad->Points->SetPoint(1,pt2);
|
|
this->Quad->Points->SetPoint(2,pt3);
|
|
this->Quad->Points->SetPoint(3,pt4);
|
|
|
|
if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) )
|
|
{
|
|
intersection = 1;
|
|
if ( tTemp < t )
|
|
{
|
|
t = tTemp;
|
|
x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2];
|
|
switch (faceNum)
|
|
{
|
|
case 2:
|
|
pcoords[0] = pc[1]; pcoords[1] = 0.0; pcoords[2] = pc[0];
|
|
break;
|
|
|
|
case 3:
|
|
pcoords[0] = 1.0-pc[1]; pcoords[1] = pc[1]; pcoords[2] = pc[0];
|
|
break;
|
|
|
|
case 4:
|
|
pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return intersection;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int vtkWedge::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds,
|
|
vtkPoints *pts)
|
|
{
|
|
ptIds->Reset();
|
|
pts->Reset();
|
|
|
|
for ( int i=0; i < 4; i++ )
|
|
{
|
|
ptIds->InsertId(i,this->PointIds->GetId(i));
|
|
pts->InsertPoint(i,this->Points->GetPoint(i));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::Derivatives(int vtkNotUsed(subId), double pcoords[3],
|
|
double *values, int dim, double *derivs)
|
|
{
|
|
double *jI[3], j0[3], j1[3], j2[3];
|
|
double functionDerivs[18], sum[3], value;
|
|
int i, j, k;
|
|
|
|
// compute inverse Jacobian and interpolation function derivatives
|
|
jI[0] = j0; jI[1] = j1; jI[2] = j2;
|
|
this->JacobianInverse(pcoords, jI, functionDerivs);
|
|
|
|
// now compute derivates of values provided
|
|
for (k=0; k < dim; k++) //loop over values per vertex
|
|
{
|
|
sum[0] = sum[1] = sum[2] = 0.0;
|
|
for ( i=0; i < 6; i++) //loop over interp. function derivatives
|
|
{
|
|
value = values[dim*i + k];
|
|
sum[0] += functionDerivs[i] * value;
|
|
sum[1] += functionDerivs[6 + i] * value;
|
|
sum[2] += functionDerivs[12 + i] * value;
|
|
}
|
|
|
|
for (j=0; j < 3; j++) //loop over derivative directions
|
|
{
|
|
derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Compute iso-parametric interpolation functions
|
|
//
|
|
void vtkWedge::InterpolationFunctions(double pcoords[3], double sf[6])
|
|
{
|
|
sf[0] = (1.0 - pcoords[0] - pcoords[1]) * (1.0 - pcoords[2]);
|
|
sf[1] = pcoords[0] * (1.0 - pcoords[2]);
|
|
sf[2] = pcoords[1] * (1.0 - pcoords[2]);
|
|
sf[3] = (1.0 - pcoords[0] - pcoords[1]) * pcoords[2];
|
|
sf[4] = pcoords[0] * pcoords[2];
|
|
sf[5] = pcoords[1] * pcoords[2];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::InterpolationDerivs(double pcoords[3], double derivs[18])
|
|
{
|
|
// r-derivatives
|
|
derivs[0] = -1.0 + pcoords[2];
|
|
derivs[1] = 1.0 - pcoords[2];
|
|
derivs[2] = 0.0;
|
|
derivs[3] = -pcoords[2];
|
|
derivs[4] = pcoords[2];
|
|
derivs[5] = 0.0;
|
|
|
|
// s-derivatives
|
|
derivs[6] = -1.0 + pcoords[2];
|
|
derivs[7] = 0.0;
|
|
derivs[8] = 1.0 - pcoords[2];
|
|
derivs[9] = -pcoords[2];
|
|
derivs[10] = 0.0;
|
|
derivs[11] = pcoords[2];
|
|
|
|
// t-derivatives
|
|
derivs[12] = -1.0 + pcoords[0] + pcoords[1];
|
|
derivs[13] = -pcoords[0];
|
|
derivs[14] = -pcoords[1];
|
|
derivs[15] = 1.0 - pcoords[0] - pcoords[1];
|
|
derivs[16] = pcoords[0];
|
|
derivs[17] = pcoords[1];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Given parametric coordinates compute inverse Jacobian transformation
|
|
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
|
|
// function derivatives. Returns 0 if no inverse exists.
|
|
int vtkWedge::JacobianInverse(double pcoords[3], double **inverse,
|
|
double derivs[18])
|
|
{
|
|
int i, j;
|
|
double *m[3], m0[3], m1[3], m2[3];
|
|
double x[3];
|
|
|
|
// compute interpolation function derivatives
|
|
this->InterpolationDerivs(pcoords,derivs);
|
|
|
|
// create Jacobian matrix
|
|
m[0] = m0; m[1] = m1; m[2] = m2;
|
|
for (i=0; i < 3; i++) //initialize matrix
|
|
{
|
|
m0[i] = m1[i] = m2[i] = 0.0;
|
|
}
|
|
|
|
for ( j=0; j < 6; j++ )
|
|
{
|
|
this->Points->GetPoint(j, x);
|
|
for ( i=0; i < 3; i++ )
|
|
{
|
|
m0[i] += x[i] * derivs[j];
|
|
m1[i] += x[i] * derivs[6 + j];
|
|
m2[i] += x[i] * derivs[12 + j];
|
|
}
|
|
}
|
|
|
|
// now find the inverse
|
|
if ( vtkMath::InvertMatrix(m,inverse,3) == 0 )
|
|
{
|
|
#define VTK_MAX_WARNS 3
|
|
static int numWarns=0;
|
|
if ( numWarns++ < VTK_MAX_WARNS )
|
|
{
|
|
vtkErrorMacro(<<"Jacobian inverse not found");
|
|
vtkErrorMacro(<<"Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2]
|
|
<< m[1][0] << " " << m[1][1] << " " << m[1][2]
|
|
<< m[2][0] << " " << m[2][1] << " " << m[2][2] );
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::GetEdgePoints(int edgeId, int* &pts)
|
|
{
|
|
pts = this->GetEdgeArray(edgeId);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::GetFacePoints(int faceId, int* &pts)
|
|
{
|
|
pts = this->GetFaceArray(faceId);
|
|
}
|
|
|
|
static double vtkWedgeCellPCoords[18] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0,
|
|
0.0,0.0,1.0, 1.0,0.0,1.0, 0.0,1.0,1.0};
|
|
|
|
//----------------------------------------------------------------------------
|
|
double *vtkWedge::GetParametricCoords()
|
|
{
|
|
return vtkWedgeCellPCoords;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkWedge::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os,indent);
|
|
|
|
os << indent << "Line:\n";
|
|
this->Line->PrintSelf(os,indent.GetNextIndent());
|
|
os << indent << "Triangle:\n";
|
|
this->Triangle->PrintSelf(os,indent.GetNextIndent());
|
|
os << indent << "Quad:\n";
|
|
this->Quad->PrintSelf(os,indent.GetNextIndent());
|
|
}
|
|
|