Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

153 lines
5.1 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkParametricSuperToroid.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkParametricSuperToroid - Generate a supertoroid.
// .SECTION Description
// vtkParametricSuperToroid generates a supertoroid. Essentially a
// supertoroid is a torus with the sine and cosine terms raised to a power.
// A supertoroid is a versatile primitive that is controlled by four
// parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst
// the value of n1 determines the shape of the torus ring and n2 determines
// the shape of the cross section of the ring. It is the different values of
// these powers which give rise to a family of 3D shapes that are all
// basically toroidal in shape.
//
// For further information about this surface, please consult the
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
// in the "VTK Technical Documents" section in the VTk.org web pages.
//
// Also see: http://astronomy.swin.edu.au/~pbourke/surfaces/.
//
// .SECTION Caveats
// Care needs to be taken specifying the bounds correctly. You may need to
// carefully adjust MinimumU, MinimumV, MaximumU, MaximumV.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
// class.
//
#ifndef __vtkParametricSuperToroid_h
#define __vtkParametricSuperToroid_h
#include "vtkParametricFunction.h"
class VTK_COMMON_EXPORT vtkParametricSuperToroid : public vtkParametricFunction
{
public:
vtkTypeRevisionMacro(vtkParametricSuperToroid,vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct a supertoroid with the following parameters:
// MinimumU = 0, MaximumU = 2*Pi,
// MinimumV = 0, MaximumV = 2*Pi,
// JoinU = 1, JoinV = 1,
// TwistU = 0, TwistV = 0,
// ClockwiseOrdering = 1,
// DerivativesAvailable = 0,
// RingRadius = 1, CrossSectionRadius = 0.5,
// N1 = 1, N2 = 1, XRadius = 1,
// YRadius = 1, ZRadius = 1, a torus in this case.
static vtkParametricSuperToroid *New();
// Description
// Return the parametric dimension of the class.
virtual int GetDimension() {return 2;}
// Description:
// Set/Get the radius from the center to the middle of the ring of the
// supertoroid. Default = 1.
vtkSetMacro(RingRadius,double);
vtkGetMacro(RingRadius,double);
// Description:
// Set/Get the radius of the cross section of ring of the supertoroid.
// Default = 0.5.
vtkSetMacro(CrossSectionRadius,double);
vtkGetMacro(CrossSectionRadius,double);
// Description:
// Set/Get the scaling factor for the x-axis. Default = 1.
vtkSetMacro(XRadius,double);
vtkGetMacro(XRadius,double);
// Description:
// Set/Get the scaling factor for the y-axis. Default = 1.
vtkSetMacro(YRadius,double);
vtkGetMacro(YRadius,double);
// Description:
// Set/Get the scaling factor for the z-axis. Default = 1.
vtkSetMacro(ZRadius,double);
vtkGetMacro(ZRadius,double);
// Description:
// Set/Get the shape of the torus ring. Default = 1.
vtkSetMacro(N1,double);
vtkGetMacro(N1,double);
// Description:
// Set/Get the shape of the cross section of the ring. Default = 1.
vtkSetMacro(N2,double);
vtkGetMacro(N2,double);
// Description:
// A supertoroid.
//
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
//
// uvw are the parameters with Pt being the the cartesian point,
// Duvw are the derivatives of this point with respect to u, v and w.
// Pt, Duvw are obtained from Evaluate().
//
// This function is only called if the ScalarMode has the value
// vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperToroid();
~vtkParametricSuperToroid();
// Variables
double RingRadius;
double CrossSectionRadius;
double XRadius;
double YRadius;
double ZRadius;
double N1;
double N2;
private:
vtkParametricSuperToroid(const vtkParametricSuperToroid&); // Not implemented.
void operator=(const vtkParametricSuperToroid&); // Not implemented.
// Description:
// Calculate sign(x)*(abs(x)^n).
double Power ( double x, double n );
};
#endif