You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
9.6 KiB
285 lines
9.6 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkImageGradient.cxx,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
#include "vtkImageGradient.h"
|
|
|
|
#include "vtkDataArray.h"
|
|
#include "vtkImageData.h"
|
|
#include "vtkInformation.h"
|
|
#include "vtkInformationVector.h"
|
|
#include "vtkObjectFactory.h"
|
|
#include "vtkPointData.h"
|
|
#include "vtkStreamingDemandDrivenPipeline.h"
|
|
|
|
#include <math.h>
|
|
|
|
vtkCxxRevisionMacro(vtkImageGradient, "$Revision: 1.54.4.1 $");
|
|
vtkStandardNewMacro(vtkImageGradient);
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Construct an instance of vtkImageGradient fitler.
|
|
vtkImageGradient::vtkImageGradient()
|
|
{
|
|
this->HandleBoundaries = 1;
|
|
this->Dimensionality = 2;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkImageGradient::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os, indent);
|
|
os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n";
|
|
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int vtkImageGradient::RequestInformation(vtkInformation*,
|
|
vtkInformationVector** inputVector,
|
|
vtkInformationVector* outputVector)
|
|
{
|
|
// Get input and output pipeline information.
|
|
vtkInformation* outInfo = outputVector->GetInformationObject(0);
|
|
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
|
|
|
|
// Get the input whole extent.
|
|
int extent[6];
|
|
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent);
|
|
|
|
// Shrink output image extent by one pixel if not handling boundaries.
|
|
if(!this->HandleBoundaries)
|
|
{
|
|
for(int idx = 0; idx < this->Dimensionality; ++idx)
|
|
{
|
|
extent[idx*2] += 1;
|
|
extent[idx*2 + 1] -= 1;
|
|
}
|
|
}
|
|
|
|
// Store the new whole extent for the output.
|
|
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6);
|
|
|
|
// Set the number of point data componets to the number of
|
|
// components in the gradient vector.
|
|
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE,
|
|
this->Dimensionality);
|
|
|
|
return 1;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// This method computes the input extent necessary to generate the output.
|
|
int vtkImageGradient::RequestUpdateExtent(vtkInformation*,
|
|
vtkInformationVector** inputVector,
|
|
vtkInformationVector* outputVector)
|
|
{
|
|
// Get input and output pipeline information.
|
|
vtkInformation* outInfo = outputVector->GetInformationObject(0);
|
|
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
|
|
|
|
// Get the input whole extent.
|
|
int wholeExtent[6];
|
|
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
|
|
|
|
// Get the requested update extent from the output.
|
|
int inUExt[6];
|
|
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
|
|
|
|
// In order to do central differencing we need one more layer of
|
|
// input pixels than we are producing output pixels.
|
|
for(int idx = 0; idx < this->Dimensionality; ++idx)
|
|
{
|
|
inUExt[idx*2] -= 1;
|
|
inUExt[idx*2+1] += 1;
|
|
|
|
// If handling boundaries instead of shrinking the image then we
|
|
// must clip the needed extent within the whole extent of the
|
|
// input.
|
|
if (this->HandleBoundaries)
|
|
{
|
|
if (inUExt[idx*2] < wholeExtent[idx*2])
|
|
{
|
|
inUExt[idx*2] = wholeExtent[idx*2];
|
|
}
|
|
if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
|
|
{
|
|
inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store the update extent needed from the intput.
|
|
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
|
|
|
|
return 1;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// This execute method handles boundaries.
|
|
// it handles boundaries. Pixels are just replicated to get values
|
|
// out of extent.
|
|
template <class T>
|
|
void vtkImageGradientExecute(vtkImageGradient *self,
|
|
vtkImageData *inData, T *inPtr,
|
|
vtkImageData *outData, double *outPtr,
|
|
int outExt[6], int id)
|
|
{
|
|
int idxX, idxY, idxZ;
|
|
int maxX, maxY, maxZ;
|
|
vtkIdType inIncX, inIncY, inIncZ;
|
|
vtkIdType outIncX, outIncY, outIncZ;
|
|
unsigned long count = 0;
|
|
unsigned long target;
|
|
int axesNum;
|
|
int *inExt = inData->GetExtent();
|
|
int *wholeExtent;
|
|
vtkIdType *inIncs;
|
|
double r[3], d;
|
|
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
|
|
|
|
// find the region to loop over
|
|
maxX = outExt[1] - outExt[0];
|
|
maxY = outExt[3] - outExt[2];
|
|
maxZ = outExt[5] - outExt[4];
|
|
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
|
|
target++;
|
|
|
|
// Get the dimensionality of the gradient.
|
|
axesNum = self->GetDimensionality();
|
|
|
|
// Get increments to march through data
|
|
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
|
|
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
|
|
|
|
// The data spacing is important for computing the gradient.
|
|
// central differences (2 * ratio).
|
|
// Negative because below we have (min - max) for dx ...
|
|
inData->GetSpacing(r);
|
|
r[0] = -0.5 / r[0];
|
|
r[1] = -0.5 / r[1];
|
|
r[2] = -0.5 / r[2];
|
|
|
|
// get some other info we need
|
|
inIncs = inData->GetIncrements();
|
|
wholeExtent = inData->GetExtent();
|
|
|
|
// Move the pointer to the correct starting position.
|
|
inPtr += (outExt[0]-inExt[0])*inIncs[0] +
|
|
(outExt[2]-inExt[2])*inIncs[1] +
|
|
(outExt[4]-inExt[4])*inIncs[2];
|
|
|
|
// Loop through ouput pixels
|
|
for (idxZ = 0; idxZ <= maxZ; idxZ++)
|
|
{
|
|
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
|
|
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
|
|
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
|
|
{
|
|
if (!id)
|
|
{
|
|
if (!(count%target))
|
|
{
|
|
self->UpdateProgress(count/(50.0*target));
|
|
}
|
|
count++;
|
|
}
|
|
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
|
|
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
|
|
for (idxX = 0; idxX <= maxX; idxX++)
|
|
{
|
|
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
|
|
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
|
|
|
|
// do X axis
|
|
d = (double)(inPtr[useXMin]);
|
|
d -= (double)(inPtr[useXMax]);
|
|
d *= r[0]; // multiply by the data spacing
|
|
*outPtr = d;
|
|
outPtr++;
|
|
|
|
// do y axis
|
|
d = (double)(inPtr[useYMin]);
|
|
d -= (double)(inPtr[useYMax]);
|
|
d *= r[1]; // multiply by the data spacing
|
|
*outPtr = d;
|
|
outPtr++;
|
|
if (axesNum == 3)
|
|
{
|
|
// do z axis
|
|
d = (double)(inPtr[useZMin]);
|
|
d -= (double)(inPtr[useZMax]);
|
|
d *= r[2]; // multiply by the data spacing
|
|
*outPtr = d;
|
|
outPtr++;
|
|
}
|
|
inPtr++;
|
|
}
|
|
outPtr += outIncY;
|
|
inPtr += inIncY;
|
|
}
|
|
outPtr += outIncZ;
|
|
inPtr += inIncZ;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// This method contains a switch statement that calls the correct
|
|
// templated function for the input data type. This method does handle
|
|
// boundary conditions.
|
|
void vtkImageGradient::ThreadedRequestData(vtkInformation*,
|
|
vtkInformationVector**,
|
|
vtkInformationVector*,
|
|
vtkImageData*** inData,
|
|
vtkImageData** outData,
|
|
int outExt[6],
|
|
int threadId)
|
|
{
|
|
// Get the input and output data objects.
|
|
vtkImageData* input = inData[0][0];
|
|
vtkImageData* output = outData[0];
|
|
|
|
// The ouptut scalar type must be double to store proper gradients.
|
|
if(output->GetScalarType() != VTK_DOUBLE)
|
|
{
|
|
vtkErrorMacro("Execute: output ScalarType is "
|
|
<< output->GetScalarType() << "but must be double.");
|
|
return;
|
|
}
|
|
|
|
// Gradient makes sense only with one input component. This is not
|
|
// a Jacobian filter.
|
|
if(input->GetNumberOfScalarComponents() != 1)
|
|
{
|
|
vtkErrorMacro(
|
|
"Execute: input has more than one component. "
|
|
"The input to gradient should be a single component image. "
|
|
"Think about it. If you insist on using a color image then "
|
|
"run it though RGBToHSV then ExtractComponents to get the V "
|
|
"components. That's probably what you want anyhow.");
|
|
return;
|
|
}
|
|
|
|
// Dispatch computation for the input scalar type.
|
|
void* inPtr = input->GetScalarPointer();
|
|
double* outPtr = (double*)(output->GetScalarPointerForExtent(outExt));
|
|
switch(input->GetScalarType())
|
|
{
|
|
vtkTemplateMacro(
|
|
vtkImageGradientExecute(this, input, static_cast<VTK_TT*>(inPtr),
|
|
output, outPtr, outExt, threadId)
|
|
);
|
|
default:
|
|
vtkErrorMacro("Execute: Unknown ScalarType " << input->GetScalarType());
|
|
return;
|
|
}
|
|
}
|
|
|