Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

285 lines
9.6 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageGradient.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageGradient.h"
#include "vtkDataArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageGradient, "$Revision: 1.54.4.1 $");
vtkStandardNewMacro(vtkImageGradient);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageGradient fitler.
vtkImageGradient::vtkImageGradient()
{
this->HandleBoundaries = 1;
this->Dimensionality = 2;
}
//----------------------------------------------------------------------------
void vtkImageGradient::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n";
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
}
//----------------------------------------------------------------------------
int vtkImageGradient::RequestInformation(vtkInformation*,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// Get input and output pipeline information.
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
// Get the input whole extent.
int extent[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent);
// Shrink output image extent by one pixel if not handling boundaries.
if(!this->HandleBoundaries)
{
for(int idx = 0; idx < this->Dimensionality; ++idx)
{
extent[idx*2] += 1;
extent[idx*2 + 1] -= 1;
}
}
// Store the new whole extent for the output.
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6);
// Set the number of point data componets to the number of
// components in the gradient vector.
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE,
this->Dimensionality);
return 1;
}
//----------------------------------------------------------------------------
// This method computes the input extent necessary to generate the output.
int vtkImageGradient::RequestUpdateExtent(vtkInformation*,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// Get input and output pipeline information.
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
// Get the input whole extent.
int wholeExtent[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
// Get the requested update extent from the output.
int inUExt[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
// In order to do central differencing we need one more layer of
// input pixels than we are producing output pixels.
for(int idx = 0; idx < this->Dimensionality; ++idx)
{
inUExt[idx*2] -= 1;
inUExt[idx*2+1] += 1;
// If handling boundaries instead of shrinking the image then we
// must clip the needed extent within the whole extent of the
// input.
if (this->HandleBoundaries)
{
if (inUExt[idx*2] < wholeExtent[idx*2])
{
inUExt[idx*2] = wholeExtent[idx*2];
}
if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
}
}
}
// Store the update extent needed from the intput.
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
return 1;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageGradientExecute(vtkImageGradient *self,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, double *outPtr,
int outExt[6], int id)
{
int idxX, idxY, idxZ;
int maxX, maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int axesNum;
int *inExt = inData->GetExtent();
int *wholeExtent;
vtkIdType *inIncs;
double r[3], d;
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
// find the region to loop over
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
target++;
// Get the dimensionality of the gradient.
axesNum = self->GetDimensionality();
// Get increments to march through data
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// The data spacing is important for computing the gradient.
// central differences (2 * ratio).
// Negative because below we have (min - max) for dx ...
inData->GetSpacing(r);
r[0] = -0.5 / r[0];
r[1] = -0.5 / r[1];
r[2] = -0.5 / r[2];
// get some other info we need
inIncs = inData->GetIncrements();
wholeExtent = inData->GetExtent();
// Move the pointer to the correct starting position.
inPtr += (outExt[0]-inExt[0])*inIncs[0] +
(outExt[2]-inExt[2])*inIncs[1] +
(outExt[4]-inExt[4])*inIncs[2];
// Loop through ouput pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
for (idxX = 0; idxX <= maxX; idxX++)
{
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
// do X axis
d = (double)(inPtr[useXMin]);
d -= (double)(inPtr[useXMax]);
d *= r[0]; // multiply by the data spacing
*outPtr = d;
outPtr++;
// do y axis
d = (double)(inPtr[useYMin]);
d -= (double)(inPtr[useYMax]);
d *= r[1]; // multiply by the data spacing
*outPtr = d;
outPtr++;
if (axesNum == 3)
{
// do z axis
d = (double)(inPtr[useZMin]);
d -= (double)(inPtr[useZMax]);
d *= r[2]; // multiply by the data spacing
*outPtr = d;
outPtr++;
}
inPtr++;
}
outPtr += outIncY;
inPtr += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type. This method does handle
// boundary conditions.
void vtkImageGradient::ThreadedRequestData(vtkInformation*,
vtkInformationVector**,
vtkInformationVector*,
vtkImageData*** inData,
vtkImageData** outData,
int outExt[6],
int threadId)
{
// Get the input and output data objects.
vtkImageData* input = inData[0][0];
vtkImageData* output = outData[0];
// The ouptut scalar type must be double to store proper gradients.
if(output->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro("Execute: output ScalarType is "
<< output->GetScalarType() << "but must be double.");
return;
}
// Gradient makes sense only with one input component. This is not
// a Jacobian filter.
if(input->GetNumberOfScalarComponents() != 1)
{
vtkErrorMacro(
"Execute: input has more than one component. "
"The input to gradient should be a single component image. "
"Think about it. If you insist on using a color image then "
"run it though RGBToHSV then ExtractComponents to get the V "
"components. That's probably what you want anyhow.");
return;
}
// Dispatch computation for the input scalar type.
void* inPtr = input->GetScalarPointer();
double* outPtr = (double*)(output->GetScalarPointerForExtent(outExt));
switch(input->GetScalarType())
{
vtkTemplateMacro(
vtkImageGradientExecute(this, input, static_cast<VTK_TT*>(inPtr),
output, outPtr, outExt, threadId)
);
default:
vtkErrorMacro("Execute: Unknown ScalarType " << input->GetScalarType());
return;
}
}