You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							285 lines
						
					
					
						
							9.6 KiB
						
					
					
				
			
		
		
	
	
							285 lines
						
					
					
						
							9.6 KiB
						
					
					
				| /*=========================================================================
 | |
| 
 | |
|   Program:   Visualization Toolkit
 | |
|   Module:    $RCSfile: vtkImageGradient.cxx,v $
 | |
| 
 | |
|   Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 | |
|   All rights reserved.
 | |
|   See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
 | |
| 
 | |
|      This software is distributed WITHOUT ANY WARRANTY; without even
 | |
|      the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 | |
|      PURPOSE.  See the above copyright notice for more information.
 | |
| 
 | |
| =========================================================================*/
 | |
| #include "vtkImageGradient.h"
 | |
| 
 | |
| #include "vtkDataArray.h"
 | |
| #include "vtkImageData.h"
 | |
| #include "vtkInformation.h"
 | |
| #include "vtkInformationVector.h"
 | |
| #include "vtkObjectFactory.h"
 | |
| #include "vtkPointData.h"
 | |
| #include "vtkStreamingDemandDrivenPipeline.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| vtkCxxRevisionMacro(vtkImageGradient, "$Revision: 1.54.4.1 $");
 | |
| vtkStandardNewMacro(vtkImageGradient);
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Construct an instance of vtkImageGradient fitler.
 | |
| vtkImageGradient::vtkImageGradient()
 | |
| {
 | |
|   this->HandleBoundaries = 1;
 | |
|   this->Dimensionality = 2;
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| void vtkImageGradient::PrintSelf(ostream& os, vtkIndent indent)
 | |
| {
 | |
|   this->Superclass::PrintSelf(os, indent);
 | |
|   os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n";
 | |
|   os << indent << "Dimensionality: " << this->Dimensionality << "\n";
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| int vtkImageGradient::RequestInformation(vtkInformation*,
 | |
|                                          vtkInformationVector** inputVector,
 | |
|                                          vtkInformationVector* outputVector)
 | |
| {
 | |
|   // Get input and output pipeline information.
 | |
|   vtkInformation* outInfo = outputVector->GetInformationObject(0);
 | |
|   vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
 | |
| 
 | |
|   // Get the input whole extent.
 | |
|   int extent[6];
 | |
|   inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent);
 | |
| 
 | |
|   // Shrink output image extent by one pixel if not handling boundaries.
 | |
|   if(!this->HandleBoundaries)
 | |
|     {
 | |
|     for(int idx = 0; idx < this->Dimensionality; ++idx)
 | |
|       {
 | |
|       extent[idx*2] += 1;
 | |
|       extent[idx*2 + 1] -= 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Store the new whole extent for the output.
 | |
|   outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6);
 | |
| 
 | |
|   // Set the number of point data componets to the number of
 | |
|   // components in the gradient vector.
 | |
|   vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE,
 | |
|                                               this->Dimensionality);
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method computes the input extent necessary to generate the output.
 | |
| int vtkImageGradient::RequestUpdateExtent(vtkInformation*,
 | |
|                                           vtkInformationVector** inputVector,
 | |
|                                           vtkInformationVector* outputVector)
 | |
| {
 | |
|   // Get input and output pipeline information.
 | |
|   vtkInformation* outInfo = outputVector->GetInformationObject(0);
 | |
|   vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
 | |
| 
 | |
|   // Get the input whole extent.
 | |
|   int wholeExtent[6];
 | |
|   inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
 | |
| 
 | |
|   // Get the requested update extent from the output.
 | |
|   int inUExt[6];
 | |
|   outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
 | |
| 
 | |
|   // In order to do central differencing we need one more layer of
 | |
|   // input pixels than we are producing output pixels.
 | |
|   for(int idx = 0; idx < this->Dimensionality; ++idx)
 | |
|     {
 | |
|     inUExt[idx*2] -= 1;
 | |
|     inUExt[idx*2+1] += 1;
 | |
| 
 | |
|     // If handling boundaries instead of shrinking the image then we
 | |
|     // must clip the needed extent within the whole extent of the
 | |
|     // input.
 | |
|     if (this->HandleBoundaries)
 | |
|       {
 | |
|       if (inUExt[idx*2] < wholeExtent[idx*2])
 | |
|         {
 | |
|         inUExt[idx*2] = wholeExtent[idx*2];
 | |
|         }
 | |
|       if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
 | |
|         {
 | |
|         inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Store the update extent needed from the intput.
 | |
|   inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This execute method handles boundaries.
 | |
| // it handles boundaries. Pixels are just replicated to get values
 | |
| // out of extent.
 | |
| template <class T>
 | |
| void vtkImageGradientExecute(vtkImageGradient *self,
 | |
|                              vtkImageData *inData, T *inPtr,
 | |
|                              vtkImageData *outData, double *outPtr,
 | |
|                              int outExt[6], int id)
 | |
| {
 | |
|   int idxX, idxY, idxZ;
 | |
|   int maxX, maxY, maxZ;
 | |
|   vtkIdType inIncX, inIncY, inIncZ;
 | |
|   vtkIdType outIncX, outIncY, outIncZ;
 | |
|   unsigned long count = 0;
 | |
|   unsigned long target;
 | |
|   int axesNum;
 | |
|   int *inExt = inData->GetExtent();
 | |
|   int *wholeExtent;
 | |
|   vtkIdType *inIncs;
 | |
|   double r[3], d;
 | |
|   int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
 | |
| 
 | |
|   // find the region to loop over
 | |
|   maxX = outExt[1] - outExt[0];
 | |
|   maxY = outExt[3] - outExt[2];
 | |
|   maxZ = outExt[5] - outExt[4];
 | |
|   target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
 | |
|   target++;
 | |
| 
 | |
|   // Get the dimensionality of the gradient.
 | |
|   axesNum = self->GetDimensionality();
 | |
| 
 | |
|   // Get increments to march through data
 | |
|   inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
 | |
|   outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
 | |
| 
 | |
|   // The data spacing is important for computing the gradient.
 | |
|   // central differences (2 * ratio).
 | |
|   // Negative because below we have (min - max) for dx ...
 | |
|   inData->GetSpacing(r);
 | |
|   r[0] = -0.5 / r[0];
 | |
|   r[1] = -0.5 / r[1];
 | |
|   r[2] = -0.5 / r[2];
 | |
| 
 | |
|   // get some other info we need
 | |
|   inIncs = inData->GetIncrements();
 | |
|   wholeExtent = inData->GetExtent();
 | |
| 
 | |
|   // Move the pointer to the correct starting position.
 | |
|   inPtr += (outExt[0]-inExt[0])*inIncs[0] +
 | |
|            (outExt[2]-inExt[2])*inIncs[1] +
 | |
|            (outExt[4]-inExt[4])*inIncs[2];
 | |
| 
 | |
|   // Loop through ouput pixels
 | |
|   for (idxZ = 0; idxZ <= maxZ; idxZ++)
 | |
|     {
 | |
|     useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
 | |
|     useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
 | |
|     for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
 | |
|       {
 | |
|       if (!id)
 | |
|         {
 | |
|         if (!(count%target))
 | |
|           {
 | |
|           self->UpdateProgress(count/(50.0*target));
 | |
|           }
 | |
|         count++;
 | |
|         }
 | |
|       useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
 | |
|       useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
 | |
|       for (idxX = 0; idxX <= maxX; idxX++)
 | |
|         {
 | |
|         useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
 | |
|         useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
 | |
| 
 | |
|         // do X axis
 | |
|         d = (double)(inPtr[useXMin]);
 | |
|         d -= (double)(inPtr[useXMax]);
 | |
|         d *= r[0]; // multiply by the data spacing
 | |
|         *outPtr = d;
 | |
|         outPtr++;
 | |
| 
 | |
|         // do y axis
 | |
|         d = (double)(inPtr[useYMin]);
 | |
|         d -= (double)(inPtr[useYMax]);
 | |
|         d *= r[1]; // multiply by the data spacing
 | |
|         *outPtr = d;
 | |
|         outPtr++;
 | |
|         if (axesNum == 3)
 | |
|           {
 | |
|           // do z axis
 | |
|           d = (double)(inPtr[useZMin]);
 | |
|           d -= (double)(inPtr[useZMax]);
 | |
|           d *= r[2]; // multiply by the data spacing
 | |
|           *outPtr = d;
 | |
|           outPtr++;
 | |
|           }
 | |
|         inPtr++;
 | |
|         }
 | |
|       outPtr += outIncY;
 | |
|       inPtr += inIncY;
 | |
|       }
 | |
|     outPtr += outIncZ;
 | |
|     inPtr += inIncZ;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method contains a switch statement that calls the correct
 | |
| // templated function for the input data type.  This method does handle
 | |
| // boundary conditions.
 | |
| void vtkImageGradient::ThreadedRequestData(vtkInformation*,
 | |
|                                            vtkInformationVector**,
 | |
|                                            vtkInformationVector*,
 | |
|                                            vtkImageData*** inData,
 | |
|                                            vtkImageData** outData,
 | |
|                                            int outExt[6],
 | |
|                                            int threadId)
 | |
| {
 | |
|   // Get the input and output data objects.
 | |
|   vtkImageData* input = inData[0][0];
 | |
|   vtkImageData* output = outData[0];
 | |
| 
 | |
|   // The ouptut scalar type must be double to store proper gradients.
 | |
|   if(output->GetScalarType() != VTK_DOUBLE)
 | |
|     {
 | |
|     vtkErrorMacro("Execute: output ScalarType is "
 | |
|                   << output->GetScalarType() << "but must be double.");
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   // Gradient makes sense only with one input component.  This is not
 | |
|   // a Jacobian filter.
 | |
|   if(input->GetNumberOfScalarComponents() != 1)
 | |
|     {
 | |
|     vtkErrorMacro(
 | |
|       "Execute: input has more than one component. "
 | |
|       "The input to gradient should be a single component image. "
 | |
|       "Think about it. If you insist on using a color image then "
 | |
|       "run it though RGBToHSV then ExtractComponents to get the V "
 | |
|       "components. That's probably what you want anyhow.");
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   // Dispatch computation for the input scalar type.
 | |
|   void* inPtr = input->GetScalarPointer();
 | |
|   double* outPtr = (double*)(output->GetScalarPointerForExtent(outExt));
 | |
|   switch(input->GetScalarType())
 | |
|     {
 | |
|     vtkTemplateMacro(
 | |
|       vtkImageGradientExecute(this, input, static_cast<VTK_TT*>(inPtr),
 | |
|                               output, outPtr, outExt, threadId)
 | |
|       );
 | |
|     default:
 | |
|       vtkErrorMacro("Execute: Unknown ScalarType " << input->GetScalarType());
 | |
|       return;
 | |
|     }
 | |
| }
 | |
| 
 |